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Abstract- This tutorial is intended for students of the sciences or engineering who
are interested in theory and who would like a relatively brief, intuitively accessible
introduction to set theory that meets their limited needs. The present mainstream
axiomatic set theory is based upon the Zermelo-Fraenkel axioms (ZF) or ZF plus the
axiom of choice (ZFC). This theory permits the creation of unimaginably large sets,
populated by mostly undefinable elements. The mathematical ”real line” is such a
set.

The role of scientific theory in the scientific enterprise has been to provide symbolic
models for real phenomena. There seems to be no foreseeable need for elements
that are too numerous to be defined, or even named, in such work. Symbolic sets
are well defined sets of symbolic elements which we are able to construct with the
aid of suitably constrained axioms. The definate (pronounced de-fine’-ate) real line
contains just the well defined elements of the real line and it is sufficient for numerical
scientific computation.

ZF and ZFC were influenced by the development of formal logic in the 19th century.
This paper takes a constructive point of view that makes it less abstract and more
accessible and is influenced by the development of computer science.

An acquaintance with discrete mathematics and with convergent sequences is prob-
ably all that one needs in order to study this paper because we shall define the
concepts we introduce. Further definition and discussion of any standard mathemat-
ical terms used herein can easily be found through a keyword search of the web.
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1. Introduction

Throughout much of human history, progress in mathematics has been motivated
by practical concerns, largely in such matters as agriculture, commerce, technology
and science. This circumstance began to change when progress in the study of logic
led to the formalization of deductive proofs. During the late nineteenth century,
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a number of mathematicians and logicians became actively engaged in attempts to
give mathematics a firm foundation in formal logic. One very ambitious goal was,
having defined the logical language and some consistent mathematical axioms, to
then deduce all that was then known of mathematics. Unfortunately, it is unclear
precisely which axioms should be employed and not possible to prove their consis-
tency. Logical foundations for mathematics are presently not well established but
a large body of interesting mathematical theory has resulted. (For a survey of the
philosophical foundations of mathematics, we suggest the online Wikipedia article
on Foundations of Mathematics.)

An important result of this work has been the divergence between mathematical
set theory and the applications of mathematics to scientific theory. Much of this
divergence can be ascribed to differences in method as it applies to the selection of
axioms. The mathematical logicist view is that one can be free to introduce any
axiom that is sufficiently interesting and which (one believes) cannot be proved or
disproved by the preexisting axiom set. Having done that, one can then proceed to
deduce some of its consequences, however counterintuitive they may be.

The scientific method is much more constrained. This takes some explaining. Up
to this time, the goal of scientific theory has been to develop symbolic theories that
adequately describe the observable properties of real phenomena. These properties
are determined by observation and, when possible, by conducting experiments. If one
chooses axioms that are too simple or unnecessarily broad in scope, one increases the
chance that in the near future experiments will reveal some discrepancies of theory
with observation. A common view among scientists is that a theory should be as
simple as possible but not more so.

Simplicity alone is an inadequate criterion. One might argue that Newtonian physics
is simpler than general relativity but general relativity is more correct in predicting
certain critical observations. One’s intuition is also not invariably a correct guide.
Einstein, for example, found it difficult to accept quantum theory because he believed
that ”God does not play at dice with the world.” Nevertheless, quantum theory is
the most accurate model for many physical observations. To sum up these simple
remarks, nature is the arbiter of the selection of natural laws - not simplicity, not
interestingness, not intuition.

One more thing: theoretical models must be communicable by means of texts in a
sufficiently expressive language. The same thing is also true of logic and mathematics
but logicism has introduced some new philosophic problems. For example, in the
standard form of modern set theory, sets of elements can be so large that most
of their elements cannot be defined by any text. In addition, the axiom of choice
tells us that these undefinable elements can be well ordered (a specific type of order
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which will be explained in this paper). These counterintuitive things need not be
dismissed forever. However unlikely it may seem, scientists may someday be shocked
to discover that they need ridiculously large collections of well ordered undefinable
elements.

Meanwhile, because of a lack of foreseeable demand for them in the present scientific
marketplace, we may be excused for tentatively rejecting undefinable elements and,
instead, examining those interesting ideas that set theory has developed which are
useful for a theory of symbolic sets. This can be done by modifying the set theoretic
axioms. In doing this, it must be acknowledged that much of modern mathematics
presently depends upon the standard axioms, including the axiom of choice, and, in
its present form, is beyond the scope of symbolic set theory.

Two external references are indicated by single integers in square brackets and can
be found in the References section. Most of our our external references will be
sequences of keywords within square brackets, used as needed. For example, the
Wikipedia article on Foundations of Mathematics could be referenced as [wikipedia
foundations mathematics]. Search for it without the brackets. A good search engine
will return that article as an early choice. An article on the early development of set
theory can provide a more complete context for this introduction [early development
set theory].

Internal references, if used, will be decimals (eg. [3.2] points to the second num-
bered item in section 3). [3.0] points to section 3 but not to any numbered item
in it. Two textbooks are referenced, [1] and [2], for those who desire to study ZFC
[ZermeloFraenkel set theory]. The first one is brief but quite abstract. The second
one is also abstract but much more comprehensive and well designed for lengthy self
study. Our approach is much less abstract than the textbooks’.

This printed tutorial is in a language we call a meta-language. The alphabet of this
meta-language includes three fonts of the English alphabet and a large collection of
punctuation, formatting and logical and mathematical characters. This is a large but
finite alphabet. The existence of a sufficiently expressive meta-language is esssential
for the practice of philosophy, science, mathematics and for this paper. It is usually
taken for granted but we must be careful to observe its limitations.

Our method is largely constructive, based upon recursive generators. The presen-
tation may be described as informal, minimally abstract and strongly influenced by
computer science.
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2. Characters and Strings

Characters are visually distinguishable printed objects. A collection of distinguish-
able characters is called a class of characters. If that class of characters has certain
required properties it can constitute an alphabet. Each character in an alphabet is
also called an element of it and appears only once in it.

Examples of characters would normally be the elements of some font, or several fonts,
such as English letters, numerals, and various other distinguishable shapes which
might be employed in logical expressions, mathematical expressions, punctuation, or
formatting. A non-empty class of characters might contain just one or finitely many
or even infinitely many distinct characters. We shall see examples of that. What we
call a character might better be called a character type because the same character
might appear multiple times in some string.

Strings are non-empty sequences of characters that always have a first character.
Finite strings also have a last character while infinite strings have no last character.
A given character may appear more than once in a string. Each string will be
displayed as a row of characters, the first one being the leftmost and the last one
is the rightmost. x3y2z3 is an example of a finite string. Order of the characters
is important. Two strings are equal if and only if they are of the same length
and their character sequences are pairwise identical. Special characters, such as for
punctuation, empty spaces and carriage returns may be included in an alphabet and
may occur in strings.

When we say that a string exists, we mean that we can identify the first character,
the second character, the third character and so on up to the last character (if the
string is finite). A finite string of characters in some alphabet will be called a symbol
of that alphabet, or a text of that alphabet. The difference between a symbol and
a text is that a symbol may be any finite string of characters of a given alphabet
while a text is assumed to be meaningful. Texts constitute a subclass of symbols.
Therefore, the class of all texts of a given language cannot have more elements than
the class of all symbols of that language.

While we will have some use for infinite strings, which have a first character but
no last character, the terms symbol and text will always mean a finite string of
characters.

A collection of symbols will be called a class of symbols. If a symbol x is in a class
Z, then x is said to be an element of Z or a member of Z and Z is said to contain
x.
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We shall not be concerned with the problems of linguistics, such as grammars, se-
mantics, or meaningfulness, but we assume the existence of some meta-language in
which such meaningful things as definitions, axioms, theorems, algorithms, etc. and
pedagogical discussion can be written. Simply put, all communicable knowledge of
mathematics can be expressed by texts in such a language.

3. Elements and Classes

Many of the mathematical objects we shall be talking about will generically be called
elements. A class is a collection of distinct elements, usually with some common
properties that make the class interesting. Classes and elements are connected by
the membership relation. If x represents an element and Y represents a class, then
x ∈ Y means that x is a member of Y and x /∈ Y means that x is not a member of Y .
If x is a member of Y then Y is said to contain x. When speaking of classes we shall
assume (unless otherwise stated) that the classes in question all contain elements that
are contained in some well defined largest class which we shall call the universe of
discourse, a term which we shall normally abbreviate to the universe.

Axiom of membership 3.1. If x is an element and Y is a class, then either x ∈ Y
or x /∈ Y but not both.

We shall carefully observe the distinction between elements and classes. None of the
classes we shall define is an element. Such classes are called proper classes. For
ease of reading, but without any other mathematical significance, the elements of a
class may, optionally, be listed in parentheses, for example, the class (a, b, c). The
empty class, (), requires parentheses.

The collection of all elements that are members of a class is called the extension
of that class. The extension of a class is an important property of that class from
which other properties can be deduced, for example, its cardinality, by which we
mean the number of its elements. Each element in the extension of a class is unique
and is counted only once. A class may not contain multiple occurrences of any
element.

Definition of class equality. Two unordered classes are equal if and only if they
have the same extension.

The order in which we may list the elements of a class is irrelevant unless a specific
order has been assigned. Class (b, c, a) is equal to class (a, b, c). All empty classes
are equal because they have the same extension. Ordered classes will be displayed
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within angle brackets. For example < a, b, c > is a class to which the displayed order
has been assigned and < b, c, a > is not equal to < a, b, c >.

Certain operations are defined on classes. These will be represented in functional
forms rather than in operator notation (with the exception of some very familiar
operations such as the operations of ordinary arithmetic). If X and Y are classes
then union(X, Y ) is a function that returns a class containing only every element
that is a member of X or a member of Y . If an element occurs in both X and Y it
nevertheless occurs only once in union(X, Y ).

A collection of classes will be called a family of classes. It cannot be called a class
because classes are not elements. If z is a family of classes then union(z) is a class
containing only every element that is a member of some class in z.

Theorem of unions 3.2. The union of any family of classes exists and is a class.

Proof. This follows immediately from the definition of union and the definition of
classes. �

If X and Y are classes then intersection(X, Y ) is a function that returns a class
containing only every element that is a member of both X and Y . If z is a family of
classes then intersection(z) is a class containing only every element that is a member
of every class in z.

If X and Y are classes then the function, difference<X, Y>, returns a class con-
taining only every element that is a member of X and not a member of Y . The order
of the arguments is relevant in this function, therefore they are listed within angle
brackets instead of parentheses. We shall adhere to this practice.

We do not require existence axioms for the union, the intersection or the difference
of classes because their existence follows from the definitions.

There are also class inclusion relations. If P and Q are classes then P ⊆ Q means
that every member of P is also a member of Q. This is also expressed as P is a
subclass of Q or as Q includes P . P = Q if and only if P ⊆ Q and Q ⊆ P . When
P ⊆ Q but it is not true that Q ⊆ P , which is expressed as Q  P , then we say that
P is a proper subclass of Q, which is expressed as P ⊂ Q . The empty class is a
class and is a proper subclass of every other class.

It follows from the definition of classes that every subclass of a class is also a
class.

Observe that if X is a class then X ⊆ X and () ⊆ X.
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Classes may have properties associated with their construction or their extensions,
such as an ordinal number and a cardinal number. These will be discussed later.
Many of the properties and relations we attribute here to classes are also commonly
attributed to sets. Classes and sets are both collections of elements but we find it
convenient to deal with classes first.

4. Generating Alphabets

In order to create an alphabet we shall employ a few distinguishable primal printed
objects to begin with. Then we can use some rules for putting them together in order
to assemble our characters. We shall create strings of primals to form alphabetical
characters.

How many primals must we have? It is clear that we shall need at least one because an
empty class which can construct only the empty string will not be sufficiently useful.
Suppose we have just the primal object, 1. We can then introduce an operation
called concatenation to produce strings. For example, we can concatenate a 1 to
another 1 to produce the string 11. We can then concatenate another 1 to that and
get 111, and so on indefinitely. We can also concatenate 11 to 111 to get 11111.

Strings of just one primal printed object cannot be a satisfactory alphabet because of
the segmentation problem. If we are given the string 11111 we cannot tell whether
it is the concatenation of 1 with 1111 or the concatenation of 11 with 111 and we
cannot tell whether the shorter part was concatenated to the left or the right of the
longer part. Concatenation of such strings results in a loss of information.

The segmentation problem can be solved by having at least two primal printed
objects, for example, 0 and 1. Using these two primals we can create characters like
0, 01, 011, 0111, and so on. Concatenation of these characters loses no information
because each character begins with a 0. For example, the right concatenation of
0111 to 011 is clearly 0110111. The left concatenation of 0111 to 011 would yield
0111011.

A class of characters which can be concatenated without loss of information will be
called segmented. We require that every alphabet be segmented.

It is possible to create non-empty segmented alphabets of arbitrarily many characters
or even a class of infinitely many characters from which alphabets can be selected.
The creation of infinitely many characters can be done by a process we call simple
finite recursion. The following example illustrates simple finite recursion.



SYMBOLIC SETS AND THE REAL LINE 9

Every simple finite recursion procedure begins with a single element called the foun-
dation element or with a finite sequence of elements called the foundation se-
quence.

Begin with the foundation element, 0. The successor of 0 is 01. If x is any character,
then the right concatenation of a 1 to x, which is x1, is the next character. x1
is called the successor of x. In functional terms, suc(x) = concat<x, 1>. This
concatenation operation can be repeated (i.e., can recur) arbitrarily many times
and the procedure is called simple recursion. This procedure is also called simple
finite recursion because each element is generated after a finite number of recursions,
even though there is no last element. A sequence of distinct elements with a first
element but no last element will be called an infinite sequence.

The resulting infinite sequence, 0, 01, 011, 0111, . . . , will be called the segmented
unary class, SU . It uses two primal elements but one of them is used only as a
delimiter. Every 0 marks the start of a new character.

Had the successor function used left concatenation of a 1 rather than right concatena-
tion, we would have gotten the segmented infinite class, 0, 10, 110, 1110, . . . , in which
each 0 indicates the end of a character. This will be called the unary segmented
class, US.

The usual binary form of the natural numbers, 0, 1, 10, 11, 100, . . . , is not segmented.
In order to segment it, we would need to introduce a third primal object as a delim-
iter. We could, of course, use the first k characters of SU as primitives to generate
arbitrarily large segmented alphabets. For example, the primitives, 0, 01, 011, using
011 as a character delimiter, could generate a large segmented alphabet that includes
the decimal digits as characters.

In generating infinite classes by means of simple finite recursion we have given them
an additional property, order. Each character thus created has a unique successor.
Of any two distinct characters, one must be created before the other. If x is created
before y then x is said to be less than y. This is indicated by x < y. The class is
said to be totally ordered by <. If x and y represent the same character, then we
say that these characters are equal, x = y.

This total ordering relation, <, as we have defined it, is called a strict ordering.
For any two distinct characters, x and y, either x < y or y < x, but not both.
Because the ordering is total it is called a total strict ordering.

There are two necessary conditions for a simple finite recursion to create an infinite
class of elements. First, the successor function must be applicable to each element.
If suc is applicable to element x, then it must be applicable also to the successor
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element of x. That is, the property that suc is applicable must be inherited by all
of the elements.

The second necessary condition is that each element so created must be unique.
This is assured in our examples of SU and US because each character created is one
primal longer than its predecessor. There can be no loop in the character sequence.
This assures that the sequence created will be infinite and that < has the transitive
property: if x, y, and z are three elements such that x < y and y < z then x < z.
Also, the transitive property assures that there cannot be a loop in the sequence of
elements. When this is the case the elements of a total strict ordering are said to
have a linear ordering.

A finite sequence can also be linearly ordered.

There is a special kind of linear ordering, called a well ordering.

Definition of well ordered 4.1. A linearly ordered class is well ordered if and only
if each non-empty subclass has a least element.

In a well ordered class, the successor to an element x is the least element of the
subclass of all elements that follow x.

Not every linearly ordered class of elements is well ordered. We shall see that the
non-negative rational numbers are linearly ordered but they are not well ordered.
We shall have much more to say about order relations.

We have seen that simple finite recursion permits us to construct infinite classes of
characters from a finite class of primal characters. This is an important mathemat-
ical fact. It allows us to introduce the concept of infinity and also the concept of
completion. By completion of a representation of the natural numbers, in this case
by a recursion without end, we are able to say that the sum of any two natural num-
bers is another natural number. We call this the completion of the natural numbers
with respect to addition. We shall adhere to this meaning of ”completion.”

Completion is no small matter. Although each element of a simple finite recursion
is created after a finite number of successor operations, we must axiomatically as-
sume that the completion of the recursion exists in order to assume that the class
exists.

Axiom of completion. The completion of a simple finite recursion is a class.
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5. Reification

Symbols are essential mathematical objects and they are routinely used in proofs
without much comment about the method. For example, one might come across a
proof that begins like this: let x and y be positive integers. What is going on here
is that the symbols x and y have been selected to represent positive integers so that
we can reason about them under the assumption that they have the properties of
positive integers.

Unless other assumptions are specified, those are the only properties that may be
used in the proof. In that case there is also no specification of precisely which positive
integers x and y represent. In fact, the proof will require that they may represent
any arbitrarily selected positive integers.

Let’s call this process of naming mathematical objects reification. We shall use this
term exactly as described here although it has been used in other ways elsewhere in
philosophy, in literature, and even in bad jokes about ”reified beans.”

Also, we could specify some additional property in which case we have made a defi-
nite reification by giving x an additional property. For example, there is the

ZF Axiom of separation. For any well defined class X there is a subclass Y
consisting of all elements y of X for which condY (x) holds.

In this formulation, condY (x) may be expressed as a function whose domain is the
elements of X and which returns 1 when a specified proposition about x is true (i.e.,
when it holds) and which returns 0 otherwise. This is a definite reification of Y,
which is a subclass of X. Because all subclasses of X are also classes this axiom does
not confer existence on the subclass but it definitely reifies it. What the definition
of condY (x) does accomplish is to establish that Y is a well defined subclass of X.
We shall need a definition of well defined.

This definition will be addressed later. At this time we simply assert that any finite
class of characters or symbols may be well defined by listing its elements and that
any characters or symbols that can be generated by means of simple finite recursion
are well defined and the entire class is well defined.

What we mean by Y is well defined is that cond(Y ) is defined by a text in some
sufficiently expressive meta-language such that, given any element x of X, we can
tell whether condY (x) = 1 or condY (x) = 0. In that case, we can also say that
condY is a well-defined algorithmic function. Functions of this type, which define a
subclass, will be called filters. Filters are a kind of algorithm. Algorithms are a
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kind of procedure which will return an answer and halt, while recursive generators
need not halt.

Reification is an accepted mathematical method but it will be convenient to include
it explicitly among the axioms of set theory. However, we cannot reify more
objects than we can symbolically name.

Axiom of reification 5.1. A mathematical object may be given a unique symbolic
name so that we can reason about it.

Reification is related to the definition of classes in an important way.
What we mean by a non-empty class X is that we can reify an ele-
ment x of it and we can form two new classes: one contains only the
element that has been reified, (x), and the other contains its complement,
difference<X, (x)>, with respect to the original non-empty class.

6. Concatenation Functions

The symbols we shall use are finite strings of alphabetical characters. The strings
can be constructed by concatenations. We shall now define a family of concatenation
functions that are sufficient for this purpose.

The simplest function is concat<x, y> where x and y represent symbols. The return
value of this function will be the concatenation of these symbols in the designated
order, xy. This means that the first character of y is now the successor in xy of the
last character in x. (Infinite strings cannot be concatenated because they have no
last character, but a finite string can be left concatenated to an infinite string.)

If we want to represent the concatenation of several symbols we can use multiple
arguments such as concat<x, y, z> which will return xyz. The order of the argu-
ments is significant. concat<abc, def>= abcdef while concat<def, abc>= defabc.
Therefore, the arguments are listed within angle brackets.

The use of multiple arguments facilitates a more concise notation. concat returns a
symbol. It must have a finite linearly ordered class of symbolic arguments.

multicat is a very versatile function that takes a linearly ordered finite family of
classes of symbols as arguments and returns a class of symbols. If X and Y are
classes of symbols, multicat<X, Y > returns the class of all concatenated symbols of
the form xy where x ∈ X and y ∈ Y . multicat can also take a larger finite list of
arguments, of which some may be symbols and some may be classes of symbols. For
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example, multicat<X, y, Z> will return a class of all symbols of the form xyz, in
which x ∈ X and z ∈ Z while y is a fixed symbol.

multicat can be implemented by an algorithm (i. e., a procedure that will terminate
in a finite number of steps) when all of the classes are finite, but that is not true
otherwise. Because the list of arguments is finite, multicat always returns a class
of symbols. If one of the arguments is an infinite class then multicat will return an
infinite class of symbols.

When we discuss the generation of symbols by classes, we shall see that the multicat
of a finite, linearly ordered collection of linearly ordered classes of symbols returns a
finitely generable class of symbols. In the case of an infinite argument, the multicat
function is not algorithmic; it is a generator.

Another function, finitecat(X) has a class of segmented symbols, X, as its domain
and returns the class of all finite strings of elements of X. We shall see that this class
is also generable when X is appropriately ordered but it is finitely generable only
when X is finite. This is also the case when the input symbols are the characters of
an alphabet. By restricting ourselves to finite alphabets, we can restrict the class of
all symbols to symbols that are finitely generable.

Because the characters of any finite alphabet can be encoded as finite binary strings,
all finite strings of such characters can be encoded as finite binary strings.

7. Generating Symbols and Classes

We have already seen that some infinite classes of characters can be generated by
means of simple finite recursive generators. Let’s examine two more classes of this
kind.

Representations of the natural numbers, whether in binary, decimal, or any other
positive integer number base, can be generated by using the successor function, add1,
where the addition of 1 is carried out in a manner appropriate to that number base.
Let x represent any element. If the number base is to be binary, then add1(x) = x+b1
and the addition is according to the rules of binary arithmetic. The foundation
element is always 0 and the recursion has no end.

Another important example is the generation of all finite binary strings. Again, we
use 0 as the foundation element. The successor function is a bit more complex. If x
is a string of all ones, then successor(x) is a string of all zeros that is one bit longer
than x. Otherwise, successor(x) = x +b 1, the binary successor. This procedure
generates the class of all binary strings of length n, where n is any positive integer,
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before going on to generate all binary strings of length n+1. Because each of the
classes is finite, the entire class is finitely generated.

A similar procedure can be used to generate all finite strings of any finite alphabet
containing 2 or more characters. Let’s reify an alphabet of k characters by means
of the symbols x0, x1, x2, . . ., xk−1. These characters are ordered according to their
subscripts, which are called indices. The add1 successor function for the indices is
carried out in base k arithmetic. When the index string is a string of all (k − 1)s,
the next index string is a string of all 0’s that is one digit longer.

Another general procedure for constructing all symbols of a given non-empty, finite
alphabet will now be described. It is our first example of the use of class recursion.
We shall call this procedure canonical symbolic class generation.

LetABC represent any non-empty, finite, linearly ordered, segmented alphabet.

A concise representation for the class of all symbols of this alphabet is finitecat(ABC),
the class of all finite strings of characters of ABC. Let multicat < X, Y > repre-
sent the class of all ordered concatenations of the form concat < x, y > where
x is any member of X and y is any member of Y . When X and Y are finite,
multicat is algorithmic but when one or both of them are infiinite we shall see that
multicat < X, Y > is finitely generable.

The recursive construction of finitecat(ABC) is as follows.

The foundation class is the alphabet. C0 = ABC, and the sequentially constructed
classes will be indexed by natural numbers.

The recursion is Ck+1 = multicat<Ck, ABC>. For example,

C1 = multicat < C0, ABC >= multicat < ABC,ABC > .

The kth class contains all strings of ABC characters of length k + 1. There is no
last class. The sequence of classes is infinite.

The union of all of these classes, finitecat(ABC), is not the successor of any of them
but it is a class. Such classes are called limit classes. The further concatenation of
any two symbols in finitecat(AB) cannot produce anything new because the result
would be just a finite symbol. Therefore, this universe of symbols in ABC is said to
be complete with respect to finite concatenations of symbols.

When the alphabet is finite the successor function is algorithmic and all the sym-
bols are finitely generated. We assume that all alphabets are finite and linearly
ordered as well as segmented. The ordering can be achieved merely by listing the
characters.
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It is noteworthy that, because all of the characters of such an alphabet can be encoded
as distinct finite binary strings, all of the symbols of that alphabet can be encoded
as distinct finite binary strings. Therefore, the class of all symbols of that alphabet
cannot be more numerous than the class of distinct finite binary strings.

8. Cardinality

We need a method for quantifying the sizes of classes and for comparing them.

Let’s begin with a procedure for counting things. Consider a non-empty class X
of distinct elements. We do not know how many elements X contains so we employ
the following procedure, which we shall call countable reification.

1) The foundation family. We create two classes: the initial residue class, RX0 = X
and the initial cumulative class, CX0 = (), which is empty.

2) The successor operation is count<RXk, CXk>, where k is a representation of any
natural number. This is a function whose argument is two natural number indexed
classes which returns a family of two modified classes,
RXk+1 and CXk+1. The modification of the residue class, RXk is to reify one of its
elements (it does not matter which one) and name it xk+1 and remove it from RXk

so that RXk+1 = difference< RXk, xk+1>. The modification of the cumulative
class is CXk+1 = union(CXk, xk+1).

3) The recursion. The count function is applied recursively until, for some n, the
residue class RXn is empty.

If there is a natural number, n for which the recursion stops, then we say that the
class X is finite and its cardinality, the number of its elements, is n.

If the recursion will never stop, then we say that X has infinite cardinality. We
cannot further specify the cardinality of X but we can say that the linearly ordered
class of reified elements that this process puts into CXk for all natural numbers k is
an infinite sequence. It has a first element but no last element. Furthermore, this
sequence of elements has a clear one-to-one relationship with a subclass of the
elements of X and it also has a clear one-to-one relationship with the class of natural
numbers. It follows that every infinite class includes a subclass that has a one-to-one
relationship with the natural numbers.

We call the cardinality of the natural numbers denumerable.

Definition of one-to-one relationship 8.1. Two classes, X and Y , have a one-to-
one relationship if and only if there is a function, f(x), whose domain is all elements
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of X and whose range is all elements of Y such that each element of Y is the image
under f of exactly one element of X and each element of X is the pre-image of
exactly one element of Y .

Such functions are also called bijections. The inverse function, f−1, of a bijection,
f, is also a bijection. It is defined by f−1(f(x)) = x for each element x of X.

We shall abbreviate one-to-one as 1:1.

If there is a bijection between classes X and Y , that is equivalent to saying that the
elements of X and the elements of Y can be arranged in ordered pairs < x, y > such
that each x in X and each y in Y appears in exactly one pair.

It is clear that if two finite classes that have the same count, say n, both have a 1:1
relationship with the first n positive integers and, therefore, have a 1:1 relationship
with each other. We extend the definition of equal cardinality to all classes as
follows.

Definition of equal cardinality 8.2. Two classes have equal cardinality if and
only if there exists a 1:1 relationship between them.

Two classes that have the same cardinality are also said to be equipollent or
equinumerous or to have equal power. If two classes, X and Y , are equipol-
lent then we say that card(X) = card(Y ), where card represents the cardinality
function and it returns a symbol that represents a cardinality.

All classes that are equipollent with some given class form an equivalence family
with respect to cardinality. The equipollence of two classes, X and Y , is indicated by
X≈Y and it is an equivalence relation. Any equivalence relation, erel, is reflexive
(XerelX) and symmetric (if XerelY then Y erelX) and transitive (if XerelY and
Y erelZ then XerelZ). All classes that are equipollent with one class are equipollent
with each other and form an equivalence family.

All classes that can be generated by means of simple finite recursions or by countable
reification form an equivalence family with respect to cardinality. In particular, all
such classes have a clear 1:1 relation with any representation of the natural numbers.
Consider the following generic description of a simple finite recursive generator.

We begin with a foundation element. Let’s reify it as x0, We then apply an algo-
rithmic successor function, suc to get the next element, x1. This function is then
applied recursively without end to get an infinite sequence of distinct elements, xk,
where k represents any natural number. Clearly, every class generated by this proce-
dure will have the same cardinality, which is the cardinality of the natural numbers.
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The cardinality of this equivalence family has been given the conventional name, ℵ0
(pronounced aleph null). ℵ is the first letter of the Hebrew alphabet.

The successor functions that can be employed in this fashion must be algorithmic,
that is, the procedure must be completed by a finite sequence of finite steps. They
must have the property that each element created by them must be a new element
and not one of the previously generated elements. A sufficient condition for this
will be introduced in a later section. Also, each element created must inherit the
property of being within the domain of the sucessor function.

Any infinite subsequence of any infinite class that is created by the countable reifi-
cation procedure also is 1:1 with the natural numbers and it also has cardinality
ℵ0.

Classes that have cardinality ℵ0 are said to be denumerable. Classes that are either
denumerable or finite are said to be countable.

How are we to compare the cardinalities of infinite classes? One reasonable approach
is to extend what we know about finite classes but it must be done with care because,
unlike finite classes, infinite classes can be in a 1:1 correspondence with some of their
proper subclasses. For example the positive integers can be in a 1:1 correspondence
with the even positive integers. In that case the bijection is f(j) = 2j. It is also
clear that there is a bijection between the natural numbers and the positive integers.
In this case the bijection is f(j)=(j+1).

We use the following rules of comparison.

Two classes are equipollent and have the same cardinality if and only if they can be
placed in a 1:1 correspondence.

If a class B can be placed in a 1:1 correspondence with a subclass of a class C, then
we say that C dominates B and write B � C. This enables us to say that the
cardinality of B is less than or equal to that of C. It follows that the cardinality of
a subclass S of a class X is no greater than that of X.

If C dominates B but B does not dominate C then we say that C strictly domi-
nates B, B ≺ C, and that the cardinality of C is strictly greater than the cardinality
of B.

If two sets are equipollent then each of them dominates the other.

If B � C and also C � B then it appears reasonable to equate their cardinali-
ties, but in that case it should be possible to prove that there is a 1:1 relationship
possible.
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That mutual domination implies the existence of a 1:1 relation has been proved for
all classes. This is commonly called the Schroeder-Bernstein theorem. The general
proof will not be reproduced here but it can be found in the referenced textbooks or
online [wikipedia Schroeder-Bernstein].

The cardinality of a class X will be denoted as a function, card(X), from classes to
cardinal numbers.

We have already seen that every infinite class has a subclass that is 1:1 with the
class created from it by the process of countable reification and that this class has
the same cardinality as the natural numbers, ℵ0.

8.3 Because every infinite class has a subclass of cardinality ℵ0, this is the
smallest infinite cardinality.

It follows that every infinite class that is dominated by the natural numbers or the
finite binary strings has cardinality ℵ0. This applies to the class of all symbols of a
finite alphabet and to all of its infinite subclasses.

9. Sets

Up to this point, all of the elements we have generated have been symbols. Now, we
shall define another type of element called sets.

In the early days of set theory, sets were thought of as collections of elements, much
as we have defined classes, but sets have one more very important property: sets are
elements of a set theoretic universe and they can contain other sets as elements. This
led to the discovery of contradictions within the theory. The most famous of these is
Russell’s paradox, which is discussed in the next section. This made necessary some
revisions of set theory centered on restricting the creation of sets in order to avoid
these contradictions. Consequently, various axioms of foundation or regularity have
become part of set theory.

We shall employ such an axiom in a very simple form when we define the universes
whose elements include sets. Sets that meet the regularity condition are called
well founded. When we speak of sets it should be understood that we mean well
founded sets within the universe of discourse.

The distinctions between classes and sets are these:
1) Any collection of elements within a universe is a class but, while sets are collections
of elements, not every collection of elements can be the extension of a set.
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2) Sets are elements but classes cannot be elements. Classes that cannot be elements
are usually called proper classes. All of the classes we shall construct will be proper
classes.

3) Because sets are elements, the extension of a set may include other sets.

In constructing sets from classes, we shall use a simple function that we call wrap
which is not a standard term of ZF theory. It is easily illustrated in the case
of finite classes and sets. If (a, b, c) is a regular class of elements then {a, b, c}
is a set. That is, wrap(a, b, c) = {a, b, c}. The inverse function is unwrap, so
unwrap{a, b, c} = (a, b, c). The term wrap is derived from the act of wrapping a
collection of elements in curly brackets, which is a common notation for sets.

When dealing with infinite classes, this simple definition is inadequate. In general,
the wrap of any class will be a set having exactly the same extension if and only
if that class satisfies the condition of regularity. Classes that do not satisfy that
condition cannot be wrapped. The unwrap of a set is always a class having the same
extension.

Any class that satisfies the regularity condition will be called a regular class.

We shall also employ a function from a class to a class called multiwrap. If X is a reg-
ular class and all of its proper subclasses are also regular classes then multiwrap(X)
is the class containing wrap(X) and the wraps of all of the proper subclasses of X
as elements. For finite classes, the multiwrap is algorithmically computable. For
infinite classes, the multiwrap exists axiomatically. We shall restrict this axiom later
on.

The union of a family of classes is a class which contains only every element that is in
any of them. The wrap of that class is a set if and only if that class is regular.

10. Russell’s Paradox

In the early days of the twentieth century, the philosopher and logician Bertrand
Russell, who was interested in placing mathematics on a firm logical foundation, was
greatly troubled by a perceived paradox in set theory. At that time, it seems to have
been thought that the set of all sets is a set that exists within the theory.

Russell’s paradox is this. The set of all sets would have as a subset the set of all sets
that do not contain themselves as elements. However, if we assume that this subset
does not contain itself then it must; if we assume that it does contain itself then it
must not. Clearly this presents an unavoidable contradiction also called a paradox
or an antinomy.
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The deduction of a paradox indicates that the axioms are inconsistent and need to
be repaired in some fashion. In ZF set theory, as in our treatment, the axioms and
the constructions employed preclude this embarrassment.

This problem makes it clear why the wrap function is needed. By limiting the domain
of wrap to classes that are regular we can limit the sets of the universe to sets that
are well founded and which avoid the paradox. Specific examples will be dealt with
later.

11. Some Theorems About Cardinality

We now prove a number of useful theorems about cardinality.

Consider a denumerable family of classes, each of which contains a denumerable class
of elements. We assume that no two of the classes have any element in common,
that is, they are disjoint. What would be the cardinality of their union?

Theorem of denumerable unions 11.1. The union of any denumerable family of
pairwise disjoint denumerable classes is denumerable.

Proof. The assumed classes are nameless and their elements are also nameless. Be-
cause the family of classes is denumerable, we can reify all of them by giving each of
them the name of a natural number. We can also name each of the elements of any of
these classes with a natural number. However, each of the names in the union must
be unique. We can achieve this by using ordered pairs of natural numbers to name
each of the elements of the union. For example, any such element can be named
< x, y >, where x and y each represent a natural number. This name represents
element y of class x.

Now let us use the unary segmented alphabet US = (0, 10, 110, . . . ) to represent the
natural numbers. Because this alphabet is segmented, we can concatenate x and y
without any loss of information; every 0 represents the end of a character. Therefore
the names < x, y > and concat(x, y) = xy have a 1:1 relationship and both classes
have a 1:1 relationship with the elements of the union. However, the elements xy
are all finite binary strings and the class of all of them is an infinite subclass of the
finite binary strings. We have already seen that the class of all finite binary strings
is denumerable, so every infinite subclass of it is also denumerable. �

Every infinite class that is dominated by a denumerable class is also de-
numerable because that is the smallest infinite cardinality. Therefore, we have a
number of obvious corollaries to this theorem.
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[11.1.1] The union of any denumerable family of denumerable classes is denumer-
able.

[11.1.2] The union of a countable family of countable classes that contains a denu-
merable class is denumerable.

[11.1.3] The union of a denumerable family of pairwise disjoint countable non-empty
classes is denumerable.

Theorem of countable union 11.2. If X is an infinite class and Y is a countable
class, then union(X, Y ) has the same cardinality as X.

Proof. We have already seen that any infinite class has a denumerable subclass. Let
X = union(R,D) where D is denumerable and R is the relative complement of D
in X, which means that R = difference < X,D >.

Lemma. The union of a denumerable class with a countable class is denumerable.
This has already been demonstrated [11.1.2].

Therefore union(Y,D) can be placed in a 1:1 relationship with D, and R is in a 1:1
relationship with itself.

Then union(X, Y ) = union(R,D, Y ) = union(R, union(Y,D)). It follows that
union(X, Y ) has a 1:1 relationship with union(R,D) = X. �

Corollary 11.3. If X is an infinite class and D is denumerable and
Z = difference<X,D> is infinite then Z = difference<X,D> has the same
cardinality as X.

Proof. Z is a subclass of X. Therefore card(Z) 5 card(X). Because Z is infinite and
D is denumerable, theorem 11.2 tells us that card(Z) = card(union(Z,D)). Because
X is a subclass of union(Z,D), card(X) 5 card(union(Z,D)).

Therefore card(X) 5 card(Z) 5 card(X). We conclude that card(Z) = card(X).
�

We have already seen that the class of all finite binary strings is denumerable. We
can use this to prove the following important result.

Theorem of symbolic cardinality 11.4. The class of all symbols of a non-empty
alphabet is denumerable.

Proof. The class of all symbols of a non-empty alphabet is infinite. Let x repre-
sent any one character of the alphabet. Then we have the sequence of symbols
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x, xx, xxx,− − − which has no last element. Now, we need merely show that the
class of all symbols of the alphabet is dominated by the class of all finite binary
strings.

Consider the class of segmented unary characters, SU. Each of these characters is
uniquely represented by a binary string. If the alphabet is finite and of cardinality
n, then we can reify its characters by the first n characters of SU. If the alphabet
is infinite, then we can represent its characters by all of the characters of SU. In
either case, every symbol is represented by a unique finite binary string. Therefore,
the class of all symbols of this alphabet has a 1:1 relation to a subclass of the finite
binary strings and is dominated by the finite binary strings. �

12. Order

The order type of a class or a set is a consequence of assigning order relations to
pairs of distinct elements. This assignment is of particular importance for the classes
or sets that are used in numerical computations and also for the understanding of
ordinal numbers. There are several different but related ways of expressing an order
relation. The simplest is trichotomous.

Suppose we have a class B and let x and y be elements of B. If B is totally and
strictly ordered, then we can say for any elements x and y, that one and only one of
these things is true: x<y, y<x, or x=y. The equality relation applies if and only if
the elements are identical.

If B is not totally ordered then the trichotomy applies to some pairs of elements of B
but not necessarily to all pairs of elements. Pairs of elements to which the trichotomy
applies are said to be connected by the order relation. When we specify that a class
is partially ordered, we include totally ordered classes in that category.

The < order relation is defined to have the properties of being irreflexive (x≮x),
asymmetric (if x<y then y≮x) and transitive (if x<y and y<z then x<z). The
equivalence relation, =, is reflexive, symmetric (if x = y then y = x), and transitive.
The < relation is said to be a strict order relation.

When we speak of the order of any class of symbols that is generated by a simple finite
recursion we shall normally mean the order of generation. When the trichotomous
order of a class is total it is also said to be linear. This is the case for all infinite
classes generated by simple finite recursion.
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There is also a dichotomy that can be used. If two elements are connected then one
and only one of these applies: x<y or y≤x, which is read as y is less than or equal
to x. We call ≤ a weak order relation.

A very commonly used non-dichotomous definition of the order relation is this: If
two elements are connected then x≤y or y≤x or both. When both are true then
x=y. A nice property of this form is that only one order relation is employed. In
this form, the order relation is reflexive, transitive, and anti-symmetric (if x≤y
and y≤x then x=y).

With these definitions, we can use certain alternative forms: x>y means the same
thing as y<x, x≥y means the same thing as y≤x and, as usual, x=y means the
same thing as y=x. The natural numbers are linearly ordered, which means that the
trichotomy applies to all pairs of natural numbers and that equality is true only in
cases of numerical identity. The transitivity of < assures that each symbol in any
representation of the natural numbers can occur only once in the sequence and they
are linearly ordered.

The ordering of the natural numbers is total and strict, in the sense that if the
numbers x and y are not identical then either x<y or y<x but not both. This is not
necessarily true of symbols representing natural numbers. For example, 1 + 1 = 2,
so the symbols that represent natural numbers are not strictly ordered. The use of
= with respect to the symbolic names of reified elements should be understood to
refer to the elements themselves and not to the symbolic names. For example, if the
universe of discourse is the natural numbers then x=y makes perfect sense but 2=3
is false because 2 and 3 are the names of distinct numbers.

Furthermore, every subclass of the natural numbers has a least element. This kind
of order is called a well ordering which is special kind of linear ordering. When we
recursively generate unique symbols for any particular representation of the natural
numbers, the next symbol to be generated represents the least element of those that
have not yet been generated. When we recursively generate unique symbols for any
particular representation of the natural numbers, the first element that we encounter
that is a member of a well defined subclass of the natural numbers is the least element
of that subclass.

Every well ordering is a strict total ordering. This is so because every pair of elements
that are not identical has a unique least element. Not every strict total ordering is a
well ordering. We shall see that the rational numbers are an example of this.

When two classes have been placed in a 1:1 correspondence, it is possible to assign
to one of them the ordering of the other. In that case they are said to be order
isomorphic. Any infinite class of symbols that can be generated by simple finite
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recursion will be order isomorphic with the natural numbers. All such classes are
order isomorphic, using the order of generation. Two classes that are order isomor-
phic are also said to be of the same order type. It is easy to see that the positive
integers and the natural numbers are of the same order type.

The order type of the natural numbers will be called NN ordering. This
is an important special type of well ordering.

Consider X and Y to be two classes that are related by the bijection f(x) = y, where
x ∈ X and where y ∈ Y is the image of x under f . Then Y is order isomorphic with
X provided that f(x1) < f(x2) if and only if x1 < x2 for any pair of elements in
X.

When two classes have been placed in a 1:1 correspondence, it follows that their
subclasses are also in a 1:1 correspondence. Whenever the two classes are order
isomorphic their corresponding subclasses are also order isomorphic.

Every denumerable class can, by definition, be put in a 1:1 relationship
with the natural numbers. Therefore, every denumerable class can be
given NN ordering. Consequently, every denumerable class can be well
ordered.

It is possible for denumerable classes to be given different order types and for one
denumerable class to be given two different order types. An example of this is the
class that is the denumerable union of disjoint denumerable classes of symbols. We
have already seen that its elements can be represented by ordered pairs of natural
numbers, such as < j, k > which represents the kth element of the jth class. This is a
class of symbols which is an infinite subclass of the NN ordered class of all symbols of
a finite alphabet and it can be finitely recursively generated. Therefore. it can be NN
ordered. Neverthless, if we order these elements lexicographically the 0th element
of each of the original classes is not a successor element. < 0.0 > is the foundation
element and < k, 0 > is a limit element for each natural number k > 0.

13. Ordering Classes of Symbols

We shall discuss universes (of discourse) of sets whose foundation classes are classes
of symbols. In the recursive construction of these universes by successive classes, the
names of these classes will be indexed by ordinal numbers. These ordinals will be
a well ordered class of symbols. Therefore, it will be useful to discuss some ways of
well ordering classes of symbols.
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To begin with, we observe that any infinite class of symbols that we can generate
by means of a simple finite recursive procedure has the order of the natural numbers
(an NN order) which is the order of its generation. These classes form an equivalence
family based upon order isomorphism, they are all NN ordered, and they all have
the same cardinality, ℵ0.

The class of all finite binary strings can be ordered as a member of this family.
Consider the following generation.

The foundation class is just 0. The successor function, nextbin(x) is algorith-
mic.

Let x represent any finite binary string. If x is not a string of all 1’s, then nextbin(x)
returns x+ 1, using ordinary binary addition. However, if x is a string of all 1’s then
nextbin(x) returns a string of all 0’s which is 1 bit longer than x. In this fashion,
every possible bit string of length k will be generated before starting on strings of
length k+ 1. The universe of all finite binary strings has NN order as generated here
and cardinality ℵ0.

This is important because we have already seen that the class of all symbols of any
non-empty finite alphabet can have a 1:1 relationship with some infinite subclass of
the finite binary strings. Beause ℵ0 is the smallest infinite cardinal, every infinite
class of symbols must have cardinality ≥ ℵ0. Also, because we can NN order the
finite binary strings, every denumerable subclass of an infinite class of symbols can
inherit NN order, which is a special kind of well ordering, from the NN order of the
finite binary strings.

Given any class of symbols of a finite or NN ordered alphabet, there are two com-
monly used ways of assigning a strict and total order to them. The more familiar of
the two is usually called lexicographic. If the class is of finite cardinality, any sorting
algorithm can order it lexicographically. We shall assume any alphabet to be finitely
linear or else NN ordered.

All classes of symbols that are creatd by simple finite recursion are NN ordered by
the order of generation and all NN ordered classes are well ordered. Now suppose
we are presented with just an unordered class of symbols.

To lexicographically order any two finite strings of linerly ordered alphabetical char-
acters, we begin with the leftmost character of each string. If these are not the same
then the one with the lesser first character is the lesser of the two strings. If they are
the same then we go one step to the right and compare the next pair of characters
and so on until one of the following is true: either one of the two strings has ended in
which case it is the lesser of the two or else the two strings have different characters
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in some position, in which case the one with the lesser character in the first such
position is the lesser of the two. If the two strings have the same character sequence
and terminate at the same position then they are identical.

Every finite class of symbols has a lexicographic least element that that will be
identified after a finite number of character-pair comparisons because the strings are
all finite. The same will be true of any class of symbols having bounded length (that
is, bounded numbers of characters per symbol). If a class of symbols is infinite then
there may be no longest symbol, even though each symbol is of finite length.

Lexicographic ordering is not a well ordering for the class of all finite
strings of an alphabet of two or more characters.

Proof. Let x be the least of the alphabetical characters and let y be the successor of x.
Consider the subclass of finite strings each consisting of a string of all x characters
followed by a single y. Now consider a string in that subclass consisting of k x’s
followed by a single y, where k is any positive integer. That string cannot be the
least element of the subclass because a string of (k+1) x’s followed by a single y
is less according to lexicographic order. There is no least element of this subset.
Therefore, lexicographic ordering is not a well ordering for this class of symbols. �

The second type of ordering will be called canonical. To find the least element of a
class of symbols in canonical order, we first select the subclass of shortest length, by
which we mean the subclass of symbols having the fewest alphabetical characters.
This subclass will always exist because the length is a natural number and the natural
numbers are well ordered. Then we select the least of these by means of lexicographic
ordering. Scanning the class of alphabetical characters at each position from left to
right we will always find a least character, assuming a well ordered alphabet. The
symbols being compared are all of the same finite length, k, so the process will end
at position k. At that point, there will be one or more least symbols remaining. If
there are more than one, they must be identical, which cannot occur in a true class.
Therefore,

The canonical ordering of a class of symbols is always a well ordering.

The order in which we generated the class of all finite binary strings by means of a
simple finite recursion is the canonical ordering for that class. When the alphabet is
finite and of k > 1 characters, the class of all finite strings can be similarly generated
by identifying these characters with the numbers 0 through k − 1 and employing
the add1 function in arithmetic base k as a successor function. When the current
string is a sequence of all (k − 1)s its successor is a string of all 0s that is one bit
longer.
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On the other hand, when the alphabet is denumerable we can see that there are
denumerably many limit points. In that case, the canonical ordering is a well ordering
but it is not NN ordered.

The canonically ordered class of all symbols of a finite alphabet and the canonically
ordered class of all symbols of a denumerable alphabet both have the same cardinality,
ℵ0, and they are both well ordered, but they do not have the same order type.

Furthermore, the class of all symbols of an NN ordered alphabet cannot be generated
in canonical order by a finite recursion. Because finite alphabets are the only ones
we know how to use, we shall assume that our meta-language alphabet is
finite.

We now can justify the existence of multicat(X, Y ), where X and Y are both NN
ordered classes of symbols. We do so by demonstrating that all elements of this class
can be generated in a simple finite recursion, that is, each element will be reached
after a finite recursion of algorithmic successor functions.

Because both arguments are NN ordered, the elements of the output will have a 1:1
relationship with the class of all ordered pairs of natural numbers. We can generate
them, starting with the single element < 0, 0 >. This is the only pair that sums to
0 and it is the only pair in class C0.

The next class, C1, is the class of all pairs that sum to 1. The first element of this
class is obtained by adding 1 to the right hand element of the only element of the
previous class, giving us < 0, 1 >. There is one more element in C!. This is obtained
by subtracting 1 from the right hand element of < 0, 1 > and adding 1 to the left
hand element, giving us < 1, 0 >.

The general rule for constructing a class Ck is to begin with < 0, k > and apply
the following algorithm as long as it is applicable: going from right to left, subtract
1 from the right hand element and add1 to the left hand element. When the right
hand element is 0, start the next class.

Because each class is finite, this is an example of finite recursion.

This procedure can be generalized to apply to any finite ordered family of arguments
for multicat, each of which may be finite or NN ordered. The method is quite simple.
Each class, Ck, has the sum of all of the numbers equal to k. Begin constructing
the class with the lexically least element and then find the next least element and
so on until the lexically greatest element that sums to k is reached. Then go on to
construct Ck+1. Because each class is finite, each element will be reached within a
finite number of algorithmic steps.
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14. Ordinals and Ordinality

The natural numbers can be used as ordinal indices to reify the generated classes
in a finite recursive class generator (e.g., C0, C1, C2,. . . ). This enables us to reason
about the classes and to keep track of the order in which they were created and to
determine which of any family of classes has the least ordinal.

Ordinals are well ordered classes, which means that every subclass of them has a
least element. When we use them to index the classes in a recursive generator, there
is always a next ordinal available. The next ordinal is the least one of those that
have not yet been used.

In a finite recursion, the first limit class is the one corresponding to the union of
all previous classes after a denumerable sequence of recursions. It is not a successor
class but it contains all elements of the preceding classes. The customary symbol for
this ordinal is ω (omega).

In the case of concatenation of symbols, a finite recursion is sufficient because the
application of a concatenation function to any finite elements of the first limit class
would not create any new elements. Specifically, when we have generated all finite
strings by concatenation, the concatenation of any finite subclass of them would
create a finite string that already exists. In other words, this universe is complete
with respect to concatenation.

The generation of classes that contain sets will be different. In ZF theory, transfinite
recursion is possible and it will be convenient to have transfinite ordinals to reason
about it and to define the universe. Transfinite ordinals are essential to the reification
of the classes of a transfinite recursion when the classes are not too numerous to be
reified. For this reason we shall consider only classes of symbolic ordinals. We shall
not need any others. (When we have limited our attention to symbolic sets we shall
not need transfinite ordinals beyond ω + 1.)

Transfinite symbolic ordinals exist. The least of them is conventionally represented
by ω. This is the limit ordinal for any finite recursion. This symbol does not represent
any natural number. It is the least ordinal that is greater than any natural number.
It is the least transfinite ordinal. It is the limit ordinal of any NN ordered class.

The ordinal following ω is customarily represented by ω + 1. If k is any natural
number, then ω + k is the kth ordinal following ω. By this means, we have linearly
ordered representations for all ordinals up to the second limit ordinal,
ω + ω = ω · 2. There exist symbolic representations for vastly larger ordinals but we
shall not be needing them.
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The ordinal number of recursions in a generative procedure can be limited by specify-
ing a limit ordinal to be the least upper bound (lub) to the permitted ordinals.

When any ordinal α in the recursive generation of a class X of ordinals is specified,
the ordered class of all elements with ordinals that are less than α is called the initial
segment of X with respect to α. A convenient notation for this is initseg < X,α >.
When a limit ordinal is selected as the lub of an initial segment there is no greatest
ordinal in the initial segment.

A successor ordinal can also be specified as an lub. For example, there is the ordinal
that is usually called ω and the one that is its successor is ω + 1. We can limit the
recursion at this point by specifying that to be the least upper bound, lub. Then the
initial segment is the ordered class of all ordinals less than ω + 1.

When one ordinal class can be shown to be order isomorphic with a proper initial
segment (i.e. one that is a proper subclass) of another it will be said to be of lower
ordinality than the other.

Why do we consider limiting the ordinals in this fashion? Well, the ordinal lub can be
a part of the definition of a universe of discourse. We are free to define the universe
as we see fit. We may choose to do this wherever we see a likelihood that further
recursion would not be useful. There may be no innate limit to a certain transfinite
recursion but there may also be no good reason to pursue it beyond some interesting
point.

Some interesting properties of well ordered classes can be deduced from the definition
of a well ordering. It should be understood that a given infinite class of symbols may
have more then one well defined order type.

Definition. A class X is well ordered if and only if X is linearly ordered and every
subclass of X contains a least element.

When X is well ordered, the least element of any subclass of X is unique.

If X is a well ordered class then all subclasses of X are also well ordered.

An important result, a ”proof” of which may be found in Halmos’ section on Trans-
finite Recursion [1] is:

Comparability theorem for well ordered classes. Given any two well ordered
classes, they are either order isomorphic or one of them is order isomorphic to
a proper initial segment of the other. Only one such order isomorphism is possi-
ble.
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A recursive construction for such an isomorphism of two well ordered classes of
symbols will be found in the appendix. It should be read only after reading the body
of this paper.

15. Characteristic Functions and Natural Number
Ordering

According to the axiom of membership a particular element is either a member of a
particular set (or class) or it is not a member. Suppose we have a finite set X and we
wish to define a subset Y of it. One way to do this would be to list the members of
that subset. This would define the extension of it. Another way would be to define
a condition function, condY (x), whose domain is all of the elements of X and whose
range is the pair of values 1, 0. condY (x) would return 1 when x ∈ Y and it would
return 0 when x /∈ Y .

For example, suppose we have the linearly ordered set X =< a, b, c, d, e, f > in
which we assume the order of the elements to be as written and we wish to define
the subset Y =< b, d, e >. We could represent the condition for membership by
the binary string 010110, which is a way of representing the condY function for this
subset. Each position in the binary string represents the value of condY for the
corresponding element of X. This representation of the subset depends upon having
a finite linear ordering or a natural number ordering of the elements of X.

If a set is denumerably infinite it can inherit the order type of the natural numbers
by establishing a 1:1 relationship with them and then any subset of it could be
represented by an infinite binary string, that is, a string having a first element but
no last element. This kind of representation for a subset is called its characteristic
function. For example if we want to represent the subset of the positive integers that
are divisible by three, then the characteristic function of < 3, 6, 9, 12, · · · > would
be 001001001001 . . . Two common-sense difficulties are apparent. First, we can not
actually print the entire infinite string and, second, Georg Cantor has proved that the
class of all subsets of a denumerable set has a greater than denumerable cardinality.
Therefore its elements are too numerous to all be computed or to be defined by any
meta-language texts, or even to be reified by any collection of symbols. In ZF set
theory, it is considered acceptable for undefinable elments to axiomatically exist. We
shall consider restricting this freedom later.

If X is a set that has the order type of the natural numbers, then we can see that
the class of all of its subsets has a 1:1 relationship with the class of all infinite binary
strings, which represent their characteristic functions.
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With respect to all subsets of any set having NN order, the class of these subsets
can be given a linear ordering although it is not an NN ordering or even a well
ordering.

Consider the infinite binary strings which represent their characteristic functions.

We shall define two infinite binary strings to be equal if and only if they are pairwise
identical over all locations in the strings, which is to say if they are identical. If we
know them to be different, then there must be one or more bit locations in which
they differ. Furthermore, since the locations can be indexed by natural numbers
(used as ordinals), those locations in which they differ must have a least member,
say the kth, because the natural numbers are well ordered.

Then the subset which has a 0 at location k is defined to be the lesser of the two.
This is the application of lexicographic ordering to semi-infinite binary strings. It is
easy to show that this strict and total ordering has the transitive property.

Given any two infinite binary strings, there is no algorithm that can tell us, in a
finite number of bit-pair comparisons, that they are identical. If they are different
the comparison will stop in a finite number of steps but if that is false it will never
stop. The proposition is semi-decidable by this means. Given a textual definition
of two infinite binary strings, it may be possible to prove that they are identical or
that they are different, but most infinite binary strings are not textually definable.
They are too numerous.

16. Well Definedness

The scientific enterprise, as we now understand it, employs theory to construct sat-
isfactory symbolic models of real phenomena. Although observation of nature is
our guide, some useful compromises have been made to accommodate important
mathematical needs. For example, the idea of infinity has been accepted in order
to make the natural numbers complete with respect to addition, the signed integers
have been introduced to achieve completeness with respect to subtraction, and the
rational numbers have been created to achieve completeness with respect to divi-
sion.

With the acceptance of denumerable infinities for mathematical completeness we are
inclined to make similar compromises in our definition of well definedness but they
will be carefully limited.

Let’s begin with generability. We have seen that we can define finite recursive pro-
cesses that can generate infinite sequences of such things as alphabetical characters
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and all symbols of a finite alphabet. These things that are finitely generable are well
defined. The unifying concept here is that each element of the generated sequence
will be reached after a finite number of applications of an algorithmic successor func-
tion. In some cases the successor function may be complicated but is nevertheless
algorithmic.

There will be some simple extensions to this strict condition. Suppose that we
want to define subsequences of an NN ordered sequence. Every finite subsequence is
well-defined because it is a symbol. What are we to do about defining the infinite
ones?

In this case, characteristic functions provide a way. Every infinite subsequence has a
unique characteristic function which may be represented as an infinite binary string
and every infinite binary string represents a unique subsequence. There is a 1:1 rela-
tionship between the subsequences and their characteristic infinite binary strings. In
particular, if the successive bits of a given infinite binary string are finitely genera-
ble, then we must consider the corresponding infinite subsequence to be well defined.
Also, if the meta-language can provide a text that defines a subsequence then both
the subsequence and its characteristic function are well defined.

We shall make use of this definition of well defined in defining a restriction of the
real line to have only well defined elements.

17. Cantor’s Ladder of Infinities

Before presenting the procedure we shall use for creating universes of sets, we offer
a simplified example of an essential feature of ZF set theory. We employ a recursive
creation of a universe of sets as follows.

Axiom of the empty set. The empty set exists.

The foundation for this procedure is the empty set.

Definition of the power set. If X is a set, the power set of X, PS(X), is the set
of all subsets of X.

Axiom of the power set. If X is a set then the power set of X exists.

If X is a set in our procedure then the successor of X is PS(X).

Theorem of wrap. If Z is a class of sets then wrap(Z) is a set.

Suppose that the sets in our procedure are indexed by conventionally represented
ordinals, so that the empty set is reified as X0 and its successor as X1, and so on.
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This sequence has no end but we assume the completion of that procedure such that
if any Xk is in it then its power set is also there. Therefore, nothing new can be
created by applying the successor function to any already existing set.

Assume that we are at the first limit point. Its ordinal is ω. All of the existing sets
are finite and indexed by finitely generable ordinals. Now, we can apply the theorem
of wrap to the class of all existing sets. These are all finite but the cardinality of
the resulting class is ℵ0 and the cardinality of its wrap is also ℵ0. This is the first
infinite set in our construction. We can then apply the recursion once more, from
ordinal ω to the next limit point, ω · 2. It will be sufficient to assume that ω · 2 is
the lub of the ordinals for this exercise.

The succession of ordinals from ω on is ω+1, ω+2, ω+3, . . . ω ·2. When the recursion
reaches the ordinal lub the procedure is complete. Now we want to examine the
cardinalities of the infinite sets that have been created. Cantor’s power set theorem
is a necessary tool.

Cantor’s power set theorem. Every set is strictly dominated by its power set.
If X is a set and PS(X) is the set of all subsets of X then X≺PS(X). This is
equivalent to saying card(X) < card(PS(X)).

Proof. Observe that the elements of X have an obvious 1:1 correspondence with the
singleton elements of PS(X). Let’s call this the function f such that f(x) = x for
all x in X. This is a function from X into PS(X) but not onto, because there are
no elements of X left to correspond to the remaining elements of PS(X). PS(X)
dominates X.

We will now assume that there is another 1:1 function, g, from X onto PS(X) and
find that this assumption leads to an unavoidable contradiction. This will show that
the assumption is false and that PS(X) strictly dominates X.

Let Y be the unique set of all elements of X that are not contained in their associated
elements, g(x), of PS(X). Being a subset of X, Y is an element of PS(X).

Let z be the element of X that is associated with Y : g(z) = Y . Either z ∈ Y or
else z /∈ Y . If z ∈ Y then, by the definition of Y , it must not be an element of Y ,
a contradiction. Also, if z /∈ Y then, by the definition of Y, it must be an element
of Y, also a contradiction. There is no alternative to the conclusion that the 1:1
relationship, g cannot exist. �

We observe in passing that this proof requires that the set PS(X) exists. That
requires the axiom of the power set. The axiom of the power set declares that the
power set exists without the constructive requirement that all of its elements must
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exist (if you want to construct a brick wall, you must have bricks). This irritant will
be removed in the next section.

We already know that Cantor’s power set theorem is true for finite sets. The num-
ber of subsets of a set X of finite cardinality k is precisely the number of their
characteristic binary strings, which is 2k and 2k > k for all natural numbers, k.

It is interesting that Cantor’s powerset theorem is also true for infinite sets. Not
only is card(PS(X)) > card(X), it is very much greater. Recall that the union of a
denumerable class of disjoint denumerable classes is still only denumerable.

Let’s return to our recursive generation process. The foundation set is the empty
set, {}, which is of cardinality 0. The successor set is PS({}). The symbol for this
is obtained by wrapping a list of all subsets of the empty set in curly brackets but
the empty set has only one subset, which is the empty set. Therefore, the power
set of the empty set is {{}}, which is of cardinality 1. The successor of this set is
{{{}}{}}, which has cardinality 2.

Expressions like this and, especially, longer ones are hard to read but we can simplify
that task if we replace the open brace, {, by 1 and we replace the close brace, }, by 0.
That results in 11100100 for the set of cardinality 2. Notice that the number of 1s and
the number of 0s are equal. This will always be the case because the brackets occur
in balanced pairs. We don’t need a delimiter to identify the two subsets because a
balancing algorithm can do that. It works as follows: proceeding from left to right
and starting with zero we keep count by adding 1 for each 1 that we encounter and
subtracting 1 for each zero. When the count goes back to zero we have identified a
set. Removing the initial 1 and the terminal 0, we can then repeat the balancing
procedure to identify the two subsets which are the elements of this set.

We can repeat the recursive application of the powerset creation endlessly. Each
time we create a successor set with exponentially greater cardinality, but they are all
of finite cardinality because if k is finite then 2k is also finite. At the completion of
this simple finite recursion we have created an infinite subclass of the finite binary
strings.

Can we continue the generation process beyond this point? The answer is yes,
according to the axioms. We take the wrap of the union of all of the finite sets that
have already been created. This is a set of denumerable cardinality. Its power set a
set having the cardinality, c, of the continuum. Then we can continue to apply the
power set successor function endlessly. This will create a ladder of ever increasing
infinite cardinalities.
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There are two objections to this process from a scientific point of view. First, nature
has not provided us with infinities that we must model. The creation of even denu-
merable infinities was a mathematical convenience in the interest of completeness.
However, we shall see that the definition of the real line has a similar justification
and it has trans-denumerable cardinality.

A second objection is more compelling. Objects in a scientific model are traditionally
defined by meta-language texts. The cardinality of all texts of a non-empty countable
alphabet is denumerable. Therefore, most of the elements of a trans-denumerable
universe of discourse cannot be defined by texts.

There is no presently conceivable need for undefinable elements in a scientific model.
If nature were to require such a model, it would force a drastic redefinition of the
scientific enterprise. Absent such a need, most of the present curriculum of mathe-
matical set theory can be (at least tentatively) regarded as scientifically inapplica-
ble.

However, by simple modifications of the axioms, some of the ideas that have been
developed for set theory will be useful in creating a symbolic set theory that avoids
this problem. With such modifications, we can construct the definate real line
which contains only the well defined elements of the real line.

18. Generating Classes of Pure Sets

A recursive definition by classes can be employed to constructively define a universe
of sets in which the foundation class is empty, or else its elements are symbols, and
all elements are either foundation elements or sets. We can again generate an infinite
ladder of increasing infinite cardinalities but with axioms which will provide a clearer
path to the restrictions we desire.

Definition. A foundation class may be any well defined class of distinct symbols or
the empty class.

Axiom of existence. A foundation class exists.

Initially, we shall consider the case of an empty foundation class, that is, the case of
pure sets in which there are no urelements (i.e., symbolic foundation elements that
are not necessarily sets). It will be a simple matter to populate the foundation class
afterward.

In our recursive definition of a universe we shall employ a class of ordinals: some
specified, well ordered collection of symbols. Because they are symbols, the class of
ordinals has a countable cardinality.
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Axiom of ordinals. A class of ordinals exists.

Definition. Any collection of elements in a given universe is a class.

The ordinals are not elements of the universe being constructed. They are instru-
mental in the construction.

We also need a function to recursively create the successor classes and another func-
tion to create the limit classes of our universes.

Limit classes are created by the union function for classes.

Theorem of class unions. The union of any family of classes of elements is a
class of just those elements that are members of some class of the family.

In addition to the union, we shall be using two functions whose domains are classes
of elements. The first of these is wrap, which we have already defined and which
converts a regular class (which will soon be defined) into a set that has the same
extension. The difference between the class and the set is that a set is an element
of the universe whereas a class is not an element. A class that is not an element is
sometimes called a proper class.

Axiom of wrap. If X is a class then wrap(X) is a set and an element if and only
if X is regular.

Every class in the universes we shall define here will be a proper class even if it is
regular. By this means, we maintain a clear distinction between sets and classes.
Regularity is the gatekeeper through which classes create sets.

The second function will be called multiwrap.

Definition of multiwrap. If X is a regular class then multiwrap(X) is a class that
contains the wrap of every regular subclass of X.

The recursive function that creates successor classes called cumulative classes in
our universes will be multiwrap and the successive classes will be reified and indexed
by successive ordinals. If α is an ordinal and β is the successor ordinal of α and if
CCα is a cumulative class in the universe then the successor class is

CCβ = multiwrap(CCα).

We shall need a concept of rank, similar to its use in John von Neumann’s cumulative
hierarchy. Ranks are ordinal numbers. The ordinal of the foundation class and the
rank of each member of the foundation class is the least ordinal, for example, 0.



SYMBOLIC SETS AND THE REAL LINE 37

Definition of rank. The rank of an element is the ordinal of the least cumulative
class of which it is a member.

Definition of cumulative classes. A cumulative class having ordinal α is a class
that contains every element that has a rank that is less than or equal to α and no
others.

Let’s look at the first few classes of the construction.

In constructing a pure set theory, the foundation class, CC0, is the empty class, (),
and the multiwrap of () is {}, the empty set.

CC0 = ()
CC1 = {}
CC2 = {{}}; {}
CC3 = {{{}}, {}}; {{{}}}; {{}}; {}

Here, we have used the semicolons to delimit the sets of the classes and we have
used a comma to separate the subsets of the first set in CC3. However, this notation
rapidly becomes unreadable. If we substitute 1 for { and 0 for }, the first four classes
are:
CC0 = ()
CC1 = 10
CC2 = 1100; 10
CC3 = 11100, 100; 111000; 1100; 10

We see that CC3 contains all elements of rank 1 and rank 2 as well as all new elements
of rank 3. The reason for this is that multiwrap reintroduces the empty set at each
step. The recursive construction is such that no class can contain an element having
a rank that exceeds the ordinal of that class.

The braces are introduced as balanced pairs and the delimiters are not necessary
because we can separate the sets by means of a brace balancing algorithm.

If we perform a finite recursion of the pure sets, their union will be the class of all
hereditarily finite pure sets. If we employ binary notation these are represented by
finite binary strings, which are symbols. When canonically ordered, they will form
a sparse but NN ordered subclass of the finite binary strings.

Cantor’s theorem for multi-wrap. If all subclasses of a class X are regular, then
X≺multiwrap(X).
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Proof. If X is regular then wrap(X) is the dominant set in multiwrap(X), by
which we mean that all of the other sets in multiwrap(X) are the proper subsets of
wrap(X). The entire class dominated by wrap(X) has an obvious 1:1 relationship
with the elements of PS(wrap(X)). When all subclasses of X are regular we can see
that multiwrap(X) increases the cardinality of classes in the same way that PS(X)
increases the cardinality of sets. Furthermore, if the dominant set of a given class is
X, then the dominant set of the successor class is PS(X). �

Each set that is created by the recursion has the same rank as the ordinal of the first
cumulative class in which it appears. While each cumulative class is indexed by a
unique ordinal, many sets may share the same rank.

Definition. By an ordinally bounded class, we mean that the ranks of all of
its members have an upper bound which is less than the least upper bound of the
permitted ordinals.

Definition. A regular class is one that is ordinally bounded.

This is not the ZF-axiom of regularity.

We are now able to present an axiom which, together with the choice of a foundation
class and the permitted class of ordinals, will define the space.

Axiom of regularity 18.1. A set is well founded and an element if and only if it
is the wrap of a regular class.

This definition of regularity has interesting and important consequences. If a class
of elements satisfies the regularity condition, then all of its sub-classes also satisfy
that condition. For that reason,

Theorem of regular subsets. All of the subsets of a well founded set are well
founded sets.

If X is a regular class then the set wrap(X) exists and all of the subclasses of class
X are also regular. Therefore multiwrap(X) also exists and it contains all of the
subsets of set wrap(X).

Every cumulative successor class will have an ordinal that is greater than the ranks
of any of its previously created elements and is equal to the ranks of its newly
created elements. Furthermore, there are always some new elements in any successor
cumulative class because, according to Cantor’s power set theorem, each successor
class has a greater cardinality than its predecessor.

A membership backtrace is defined as follows. Given any non-empty set X,
select any one of its elements. Lets call it BT1. Every element of X must have
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been created before X and it will have a strictly lower rank than X. Therefore,
BT1 cannot contain X. Now select any element of BT1 and call it BT2. The rank
of BT2 will be strictly less than the rank of BT1. Therefore, BT2 cannot contain
either X or BT1. Continue this process until either the empty set or an element in
the foundation class is reached. One of these must be reached because the ordinals,
being well ordered, have a least value and because the backtraces are indexed by
strictly decreasing ordinals.

No new elements are created at any of the limit states. Therefore, every element of
a backtrace has a successor ordinal as its rank.

Any entire chain of BT elements will be called a membership backtrace.

Because of the strict monotone decrease in rank of the sets along any membership
backtrace from any set, there can be no loops in any of these backtraces. No set can
contain itself nor can it be contained in any element in any of its backtraces.

This recursive construction cannot create a set of all sets. The regularity condition
requires us to specify the ordinality of the space and it helps to define the universe.
The construction we have specified conforms to that definition. Universes constructed
in this manner are complete; every regular class has been wrapped.

This needs a little more explanation. If the ordinal lub is a succesor ordinal then the
last class created will have that ordinal. However, if the ordinal lub is limit ordinal
then that limit class will be regular because no new sets are created by the union
function. All of its elements will be ordinally bounded. Therefore there is one last
application of the successor function and the last class will be a successor class with
ordinal lub+ 1.

Suppose that the permitted ordinals have, as an upper bound, a limit class that is
beyond the first limit class. The cardinality of the first limit class is denumerable
and the cardinality of each class beyond that has a greater infinite cardinality than
its predecessor. For the successor classes, this is proved by Cantor’s theorem. Also,
every limit class is of strictly greater cardinality than any of its predecessors.

Theorem. The cardinality of a limit cumulative class, which contains the union of
all of the preceding cumulative classes, is strictly greater than the cardinality of each
of its predecessors.

Proof. Let α represent a limit ordinal and let k represent any preceding ordinal.
Because CCk is a proper subclass of CCα, its cardinality is less than or equal to that
of CCα. We shall show that it is strictly less.
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Let ordinal k+ be the immediate successor of k. We have the relation
CCk ≺ CCk+ � CCα. There are two cases to be considered. In each case, it is easy
to see by class dominance that CCk ≺ CCα. �

Therefore, if the ordinal upper bound is the second limit class, the cardinalities
of the classes from the first limit class to the second limit class form an endless
ladder of strictly increasing transdenumerable infinities. Then one last application
of multiwrap follows. (No ordinal upper bound is specified in ZF theory.)

19. Universes Having Non-empty Foundations

Assume that we have a non-empty countable foundation class of symbols. In set
theory these symbols are called urelements because they are not created from the
empty set. They can represent whatever we choose or they can be just symbols. The
construction of a universe with this foundation treats them just as symbols.

The cumulative classes will be indexed by ordinals. We employ well ordered, symbolic
ordinals.

The foundation class, CC0, may or may not be given some particular order. We
shall assume a finite linear order at this time. We shall deal with infinite foundations
later.

The constructive procedure is as follows. The classes constructed will be cumulative
classes. Given any cumulative class of ordinal k, the class of its ordinal successor,
k+, is the union of two classes:

CCk+ = union(multiwrap(CCk), CC0).

If CCk is finite, then CC0 must also be finite and CCk+ is finite.

Let’s look at the first few classes.

CC0 is a non-empty finite foundation class of symbols. It’s elements have rank
0.

CC1 is the union of CC0 and multiwrap(CC0), which contains the wrap of every
subclass of the foundation class including the wrap of ( ). Taking the union of these
gives us the cumulative class of all elements of rank 0 and of rank 1.

CC2 = union(multiwrap(CC1), CC0), which contains all elements of ranks 0, 1, and
2. The cumulative class of rank j will contain all elements of ranks 0 through j, which
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is to say that the classes form a cumulative hierarchy. The names of the cumulative
classes are indexed by their ordinals.

Cantor’s theorem tells us that multiwrap(CCk), which is the class containing all
elements of ranks 1 through k+ and which contains a dominant set and all of its
subsets, has a greater cardinality than CCk. We have already seen that, when a
class is infinite, taking the union of this class with, a countable class, does not
change its cardinality. If multiwrap(CCk) is finite then so is CC0, and the union
will result in a greater finite cardinality.

The family of cumulative classes in this universe is indexed by their ordinals. Some
of these are successor ordinals and some may be limit ordinals. The successor classes
contain all elements of rank equal to or less than their own ordinals. The limit
classes contain the union of all classes of lower ordinality and we have seen that their
cardinalities are strictly greater than the cardinalities of their predecessors.

The recursive procedure creating a set theoretic universe can be transfinite because
the multiwrap function can be applied even to those limit classes whose ordinals
are less than or equal to the specified lub, and it will always create something new,
specifically, elements of greater rank and a class of greater cardinality. While a limit
class contains all elements of lower rank, the dominant set of its successor will be new
and will contain all wrapped subclasses of the limit class as well as the foundation
elements

Two interesting cases of such universes are the case of pure sets, which we have
already visited, that is, a universe founded on the empty class, and the case of
universes founded upon a denumerable class of urelements.

20. Universes Having Denumerable Foundations

In order to construct infinite sets, we shall need a transfinite recursion or an infinite
foundation set. The powerset function, PS(X), can only create finite sets from
other finite sets because, for any set having finite cardinal k, its power set will have
2k elements. Similarly, if we apply multiwrap to any class of k elements, we get a
new class of 2k elements.

Therefore, we now assume that we have a denumerable foundation class of sym-
bols.
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Cantor’s theorem tells us that multiwrap(CCk), which is the class containing all
elements of ranks 1 through k+, has a greater cardinality than CCk. We have al-
ready seen that, when a class is infinite, taking the union of this class with CC0, a
denumerable class, does not change its cardinality.

The family of cumulative classes in this universe is indexed by the specified ordinals.
Some of these are successor ordinals and some are limit ordinals. The successor
classes contain all elements of rank equal to or less than their current ordinal. The
limit classes contain the union of all classes of lower ordinality. The recursive proce-
dure can be transfinite because the multiwrap function can axiomatically be applied
even to the limit classes (if they are regular) and it will always create something new,
specifically, elements of greater rank in a class of greater cardinality.

What we know about the sequence of infinite cardinalities which we construct by this
means is that they can be indexed by a class of symbolic ordinals. What symbols
we use for naming these cardinalities is not particularly relevant, except to avoid
confusion with other definitions.

Assuming a denumerable foundation class, the class indices can be given a least value
of ω and a greatest value of the ordinal: lub or lub + 1. This would be consistent
with transfinite constructions having a finite foundation class.

When the foundation class is denumerable and its ordinal is ω and the ordinal lub is
ω · 2, the universe contains cumulative classes having an infinite ladder of Cantor’s
increasing infinite cardinalities. It does not matter what the foundation symbols are,
so long as they are distinguishable from each other and from all subsequently created
symbols.

21. Recursion

It will be convenient at this point to review what we have done with recursion.

The Peano axioms are the most commonly accepted tools for defining the natural
numbers and for specifying their properties. However, we can do the same thing
by recursively generating symbolic representations of the natural numbers. For this
purpose we need only simple finite recursive generators. The advantage of this is
that symbols represent the observables of scientific theory and the constructive use
of symbols, rather than a list of axioms, facilitates comprehension.

The construction of a simple finite recursion requires the following:

1) a foundation, consisting of an initial element of the sequence to be generated (or
a finite intial sequence),
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2) a successor function, suc whose domain is the elements of the sequence and
whose range is the elements of the sequence other than the initial element (or a finite
initial sequence). Given any element, x, suc(x) returns an element which has not
been created earlier in the sequence, called the successor of x.
3) a process in which the successor function is applied to the last symbol (or sym-
bols) reached, recursively without end, to generate the elements of an infinite se-
quence.

In order to have an endless recursion, the applicability of the successor function
to each element must be hereditary and it must produce a new element at each
step. When either of these conditions fails, the recursion must end or become repet-
itive.

The simplest example we have used (to generate a segmented sequence of symbols
that represent the natural numbers) had a foundation of the one element, 0, and a
successor function, suc(x) = concat(x, 1). This produces the sequence 0, 01, 011,
0111 - - - . We also define the inequality, <, to mean prior location in this sequence.
For example 01<0111 because 01 occurs before 0111 in the sequence.

We know that the following statements are true of this sequence.

The sequence has a least element, 0.
The sequence is infinite, meaning that it has no greatest element.
The sequence is strictly and totally ordered.
The sequence is well ordered.
The sequence is NN ordered.

Well ordered means that, given any subclass of the elements, there is a unique least
element of them (which will be the first of them to be generated in the full sequence
of elements).

We can also generate another sequence in which we start with 0 but use ordinary
binary addition of 1 as the successor function. This will produce different finite
binary strings to represent the natural numbers but this sequence will have the same
listed properties as the first one, except that the symbols are not segmented. In fact,
the two sequences are order isomorphic.

Order isomorphism is an equivalence relation and we can think of the natural numbers
as being a concept that defines the equivalence family of such order isomorphic
sequences. In creating mathematical structures we can use any convenient one of
these symbolic sequences to represent the natural numbers.

Because any two simple finite recursive sequences can be placed in a 1:1 relationship
they all have the same cardinality, which is designated by ℵ0.
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Because they are all order isomorphic, they all have the same order type as the
natural numbers, which is sometimes designated by ω but which we shall call NN
order.

Other interesting classes that have NN order can be generated by simple finite re-
cursion. We have already seen how to generate the class of all finite binary strings
by this means.

All simple finite recursive classes have the induction property with respect to the
successor function. If the foundation element has property p and if the successor
function is hereditary for p then every element of the class has property p. By
hereditary, we mean that if any element x has property p then suc(x) also has
property p. By property, we mean any property that can be defined by a finite text
in any sufficiently expressive meta-language such that we can unambiguously decide
whether or not any element has the property.

Theorem. The induction property holds for all simple finite recursive sequences
because they are all well ordered and have only one limit point.

Proof. We assume that the recursion is hereditary for property p and that the foun-
dation element has property p. We also assume that there are some non-foundation
elements for which the inductive property p fails and we deduce a contradiction.

Because the class of elements is well ordered, there is a least element x for which p
fails. This means that the property holds for the predecessor of x, let’s call it x−.

This contradicts the assumption that the successor function is hereditary for p: that
if p holds for x− then it must also hold for x. �

The induction property can also apply to the classes of a finite class recursive gen-
erator. As an example, consider the generation of all symbols of a finite alphabet.
The procedure is as follows.

The foundation class is the alphabet, AB. We shall reify the classes in the con-
struction and index their names with some representation of the natural numbers:
C0 = AB.

Because the class names are indexed by the natural numbers as ordinals, they are a
well ordered family. Therefore, if the successor function for classes is hereditary for
a property p and if the alphabet has property p, then all classes in the construction
will have property p.

In this case, the successor function is suc(Ck) = multicat(Ck, AB).
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One class property for which this generation is hereditary is finiteness (if the foun-
dation alphabet is finite).

Although we have definitely reified names indexed by ordinals for these classes, it
is noteworthy that the classes are actually functions of the ordinals. The functional
relationship is as follows: given the ordinal k, we carry out a limited recursion up to
the class, Ck, which is then the return value of the function.

When the successor function depends upon everything that has previously been re-
cursively created, it is convenient to use cumulative classes. This is the case when
we are creating a universe of sets, using the multiwrap function. When generating
cumulative classes of sets, the successor function is:
CCk+1 = union(multiwrap(CCk), CCk)
or else
CCk+1 = union(multiwrap(CCk), CC0)
which happens to give the same result because multiwrapCCk) already contains all
sets of ranks from 1 to k + 1. Only the elements of rank 0 need to be reintroduced
by the union.

We can also define transfinite recursions. These are recursions that employ an ordinal
lub beyond ω in conventional notation, that is, recursions that are ordinally not finite.
The ordinals of such recursions have limit ordinals at intervals of ω. At each of these
limit ordinals the class is not a successor class: it is a limit class which contains all
previously reached elements but contains no new elements. It is created as the union
of all previous classes. A transfinite recursion is possible when the successor function
is applicable at the limit classes and beyond and it creates some new elements when
it is applied. If the hereditary properties of the classes remain hereditary at and
beyond each limit point then the induction property is valid for the classes.

When any class is cardinally transdenumerable, its elements cannot all be well de-
fined. The ones that can be well defined by a text in the meta-language are, at most,
denumerable.

22. Integers and Rational Numbers

Without reviewing the well known facts of arithmetic, we observe that the natural
numbers are complete with respect to addition but they are not complete with respect
to subtraction. In particular, if x and y are natural numbers and x < y then x− y is
undefined. This condition is remedied by the definition of the signed integers, which
provide the completion of the natural numbers with respect to subtraction.
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The signed integers can be represented by the union of the positive integers, the neg-
ative integers and 0. The individual symbols can consist of a single sign bit left con-
catenated to a binary string representing the magnitude. In this case, +0 = −0 = 0.
The signed integers include the natural numbers as non-negative integers.

Like the natural numbers, every integer has a unique successor. However, in the
domain of arithmetic, each integer including 0 also has a unique precursor. These
properties permit us to say that all of the signed integers are discrete both above and
below. There is no least integer so the integers are arithmetically not well ordered.
They can be well ordered by letting each negative integer immediately follow its
positive counterpart but this is not arithmetic order.

In arithmetic order, the signed integers are totally strictly ordered so they are linearly
ordered. They have no least element so they are not well ordered. Nevertheless, the
class of all signed integers greater than any specified integer is well ordered and the
class of integers less than some specified integer is such that all of its subclasses have
a greatest element.

Consider the class of equations: a · x = b, where a is a positive integer and b is a
natural number. Sometimes the solution, x =b/a, is a natural number but frequently
it is not. The non-negative rational numbers represent the completion of the natural
numbers with respect to division by a positive integer and they include the natural
numbers because b=b/1 for all natural numbers, b.

Suppose we wish to order the two non-negative rational numbers, a/b and c/d. Let
rel represent any one of the relations: <,≤, >,≥,= . We say that (a/b)rel(c/d) if
and only if (a ·d)rel(c ·b). Notice that the last relation is a comparison of two natural
numbers and we have multiplied both members of the original relation by the same
positive integer, b · d. The order of the non-negative rational numbers is complete
and therefore linear.

It is clear that the ratio of two integers, a/b, being a finite string of characters,
is a symbol. Therefore, the class of all rational numbers is denumerable (i.e., of
cardinality ℵ0). There is, however, a considerable redundancy in this representation
because n · a/n · b = a/b., where n is any positive integer. The redundancy can
be eliminated if we limit the representation of any rational number to a numerator
and a denominator that are relatively prime by canceling out any common factors.
What remains includes the positive integers and is therefore still infinite and it has
cardinality ℵ0.

It is not difficult to extend this discussion to include the signed rational numbers.
This can be done with a single sign bit because if a and b are positive integers then
−a/b = a/ − b = −(a/b). Therefore, the following collection of ordered triples can
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represent all rational numbers other than 0: < sgn, a, b > where sgn represents the
sign bit. For example, we can use the code 1 for + and 0 for -. If we restrict a and
b to be relatively prime positive integers then the union of this class of triples and 0
can be in a 1:1 relationship with the class of rational numbers.

Furthermore, if we use the segmented unary codes for a and for b then we can
concatenate the elements of each triple without ambiguity and we get the family,
multicat< sgn, a, b >, which is 1:1 with the rational numbers. In this case, a and b
are restricted to relatively prime pairs of positive integers and we take the union of
these triples with 0. These elements are all finite binary strings and therefore this
class is denumerable.

There is another simple representation for the signed rational numbers which is also
useful for the real numbers (which we shall define in the next section). In this
representation, x = k + y, where x is a signed rational and y is a non-negative
fraction. Here, k is the greatest signed integer that is less than or equal to x while
0 ≤ y < 1. This interval of values for y is also called the semi-closed unit interval,
[0, 1).

Given any two rational numbers in this form, the one with the smallest integer part
is the smaller of the two. When the integer parts are equal the one with the smallest
fractional part is the smallest.

The rational numbers have two interesting properties. The first one is that they are
arithmetically linearly ordered. Any two rational numbers which are not identical
have a unique least element. Nevertheless, they are not arithmetically well ordered
because, like the signed integers, this class has no least element.

The second property is that, unlike the integers, they are dense. A point x is dense
if, given any other nearby point y, there is always another point that is between x
and y. From this, we can see that if x is a dense point then there are infinitely many
other points in any neighborhood of x. In the case of the rational numbers they are
all dense (both above and below) because, given x and y, there is always (x + y)/2
between them. Therefore, the subclass of rational numbers in any open interval, for
example 0 < x < 1, has no least element and even the positive rationals are not
arithmetically well ordered.

There are, however, well ordered classes (of ordinals) which have semi-dense limit
points. The limit points in any transfinite class of ordinals are dense below but
discrete above. They each have a unique successor.
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23. Real Numbers

It is known that certain infinite sequences of rational numbers converge to a limit
and that some of the limits are rational numbers but some are not rational [wikipedia
irrational numbers].

Familiar examples of irrational limits are π and
√

2. The real numbers, which include
the rational numbers, are the completion of the rational numbers with respect to
convergent infinite sequences. The class of real numbers is sometimes called the
continuum or the real line and the individual real numbers are sometimes called
points on the real line.

We shall use the density and the linear order of the rational numbers as a framework
upon which we shall construct representations of the real numbers as the limits of
convergent rational sequences.

The class of signed rational numbers includes the signed integers. We shall assume
that the class of real numbers includes the signed rational numbers and certain
other numbers, called irrational numbers. We also assume that the real numbers
are linearly ordered, as are the rational numbers. As we shall define them the real
numbers are assumed to have the following properties.

1) the class of real numbers includes the signed rational numbers.
2) If x is a real number there exists a signed integer which is greater than x and
there is a signed integer which is less than or equal to x. (This assumption is quite
reasonable because the signed integers are doubly infinite.)
3) the real numbers are linearly ordered.

We interpret the last of these properties to imply the following dichotomy. There
exists a function, ordr< x, r >, where the domain of x is the real numbers and the
domain of r is the signed rational numbers, which returns 0 whenever x < r and
which returns 1 whenever x ≥ r.

What we need now is to find a suitable representation for he real numbers and to
study their properties.

For any real x, there exist integers that are greater than x. This class of integers has
a lower bound so there is a least integer which is greater than x, which we shall call
least integer upper bound of x, liub(x), and there is a greatest integer, liub(x) − 1,
which is less than or equal to x, which we shall call greatest integer lower bound of
x, gilb(x). We know that x lies in the semi-closed interval, [gilb(x), liub(x)), of unit
length. These bounds are easily found by either a finite linear search procedure or
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a finite binary search procedure. Both of these procedures are algorithmic and they
will terminate with an answer.

We shall now seek to generate a representation for x by means of a finite recursive
binary search procedure. We acknowledge at the start that the the ordr function
may or may not be computable and we shall revisit this question after we have found
a representation for the real numbers.

First initialize glb0 to be a representation of the signed integer gilb(x). Then
x = glb0 + y where y is in the semi-closed unit interval, [x− glb0, x− glb0 + 1). We
shall now seek a representation of the non-negative real fraction y = x− glb0.

Initialize lub0 to be glb0 + 1 and mp0 = (glb0 + lub0)/2 = glb0 + 1/2 is the mid-point
of the initial interval.

Now apply the following procedure recursively without end. There are two possibil-
ities.

If ordr< y,mpk >= 0 then y is less than the k’th midpoint. In that case we set
bk+1 = 0 and glbk+1 = glbk, lubk+1 = mpk,
mpk+1 = (glbk+1 + lubk+1)/2. We have not increased the value of the glb but we have
lowered the lub to the value of the previous midpoint, thereby decreasing the length
of the interval by half. These actions are associated with the value, bk+1 = 0.

If ordr< y,mpk >= 1 then y is greater than or equal to the k’th midpoint. In
that case we set bk+1 = 1 and glbk+1 = mpk, lubk+1 = lubk. As before, mpk+1 =
(glbk+1 + lubk+1)/2. We have increased glb to the value of the previous midpoint,
thereby decreasing the length of the interval by half. These actions are associated
with the value, bk+1 = 1.

Each time that bk = 1 we add 2−k to the lower bound value of the fraction y, which
is the new value of glb.

At each step glbk ≤ y < lubk. We are generating a sequence of nested semi-closed
intervals each of which includes the glb but not the lub and such that their lengths
converge by successive multiples of 1/2 toward 0. Consequently, the sequence of glb’s
converges to y.

Our representation for y is y =
∑∞

k=1 bk · 2−k.

Consider the NN ordered class, B =< 2−1, 2−2, 2−3,− − − >. The sum of these
elements is

∑
B = 1, which can be demonstrated as follows, using term by term

cancelations.
∑
B − (

∑
B)/2 = 1/2, therefore (

∑
B)/2 = 1/2 and

∑
B = 1.



SYMBOLIC SETS AND THE REAL LINE 50

Because y < 1 and each bk is either 0 or 1, it is clear that y is represented by the
sum of a proper subclass of B. Furthermore, the NN ordered binary string b of all
of the bk is precisely the characteristic function of that subclass.

One more interesting fact about b is that, if you precede it by a binary
point, it is the commonly used representation of a fraction in binary arith-
metic.

In the real world of scientific computation, we do not generate the full infinite rep-
resentation of y. Instead, we truncate it and compute the sum of the first n terms,
which is called the nth partial sum and which is a rational number. Let us therefore
examine how accurate such an approximation can be.

The first n terms of the infinite series will be called the nth prefix of y and the
remaining terms will be called the nth tail of it. The sum of the nth prefix will
be called the nth partial sum and the sum of the nth tail will be called the nth
residue.

Let P+
n represent the nth partial sum of y and let T+

n represent the nth residue of
y.

y = P+
n + T+

n , so P+
n = y − T+

n and the truncation error is −T+
n . We can easily put

an upper bound on the truncation error, because
T+
n =

∑∞
n+1 bk · 2−k ≤

∑∞
n+1 2−k = 2−n ·

∑∞
1 2−k = 2−n. The magnitude of the

truncation error of the nth partial sum decreases exponentially to 0 with increasing
n.

The rational numbers are everywhere dense so any well defined real number can be
approximated as well as desired by a rational number. Whenever a real number has
been adequately approximated by a rational number by any means, it is possible to
compute an approximation in binary format by using the binary search procedure.
In this case, the function ordr<y, r> is computable because it requires only the
comparison of two rational numbers. If desired, the upper bound of the rational
approximation may also be put into binary format.

Binary fractions that have a tail of all 1s are redundant because
∑∞

j+1 2−k = 2−j

and they are not created by the binary search procedure. The equivalent forms
that have a tail of all 0s are generated instead. Therefore, there is no last 0 in the
representation of any of the fractions. They all have an infinite number of 0s.

We shall call the class of infinite binary strings that have no last 0 the canonical
binary strings. We shall now show that the class of all infinite binary strings
has a greater cardinality than the natural numbers and that the class of canonical
binary strings has the same cardinality as the class of all infinite binary strings. This
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cardinality is called the cardinality of the continuum and is sometimes denoted by
c.

Theorem. The class of all infinite binary strings has a cardinality which is greater
than the cardinality of the natural numbers.

Proof. We shall assume that the class of all infinite binary strings is denumerable
and then derive a contradiction. This proof is essentially Cantor’s diagonal proof.

If the infinite binary strings are denumerable then they can be put into an order
isomorphism with the natural numbers. Therefore, each such string can be uniquely
identified with a natural number. Also, the individual bits in each string may each
be identified with a natural number according to their positions in the string. It
follows that each bit in the class of all infinite binary strings can be associated 1:1
with an ordered pair, such as < j, k >, which represents the kth bit of the jth string.

Now, we can show that there is another infinite bit string which has been omitted
from this class. This new bit string is created as follows. Let’s call the bits for which
j = k the diagonal bits. We complement each diagonal bit, changing a 0 into a 1 and
changing a 1 into a 0. The infinite string of all of these complemented bits cannot
have been in the assumed class because it differs in 1 bit from each of the strings.
This contradicts our assumption that the entire class of infinite binary strings is
denumerable.

However, the class of all infinite binary strings dominates the class of all finite binary
strings. For example, change every finite binary string into an infinite one by left
concatenating it to an infinite string of all 0s . The result is a subclass of infinite
binary strings that is 1:1 with the finite binary strings. Therefore, since we now know
that their cardinalities are not the same, we know that the class of infinite binary
strings has a trans-denumerable cardinality. �

The cardinality of the infinite binary strings is represented by c and c > ℵ0.

Theorem. The cardinality of the canonical binary strings is c.

Proof. The canonical bit strings are a subset of the infinite bit strings and are there-
fore dominated by them. We can also show that they dominate the infinite bit strings
as follows. In each of the infinite bit strings, insert a 0 between every pair of adjacent
bits. The resulting bit strings have an obvious 1:1 relationship with all of the infinite
bit strings but they are also a proper subset of the family of canonical bit strings. �
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Because the canonical binary strings are 1:1 with the non-negative real fractions,
we are presented with a problem. Each well defined element must be definable by
some text in the meta-language. The cardinality of such texts is ℵ0. Most of the
real fractions are undefinable! [11.3] We must contemplate the linear ordering of a
universe of real numbers, most of which are undefinable. This is an embarrassment
from a scientific point of view which we shall address later.

Summary 23.1. If x is a real number it may be represented in the form, x = glb+y,
where glb represents the greatest signed integer that is less than or equal to x and
y represents a real fraction within the unit semiclosed interval, [0, 1). We have seen
that every real fraction can be represented as the ordered sum of the elements of
some proper subsequence of the ordered class, B =< 2−1, 2−2, 2−3,− − − >. B is
an NN ordered class which sums to 1 and whose elements rapidly converge to 0.
Every proper subsequence of B sums to a real fraction. The characteristic functions
of these subsequences are infinite binary strings. The binary strings that have a tail
of all 0’s represent the finite subsequences. The binary strings that have a tail of all
1’s are redundant because each of them is numerically equal to the sum of a finite
subsequence. The class of subsequences which omits these redundant ones will be
called the canonical class and their characteristic infinite binary strings will be called
the canonical binary strings. When a canonical binary string is preceded by a binary
point, it presents the usual notation for a binary fraction. Arbitrarily good rational
approximations to the real fractions can be obtained by truncating the canonical
strings at sufficiently many bits. The cardinality of the canonical binary strings is c,
so most of thm cannot be well defined.

24. More properties of the Real numbers

Theorem.The canonical binary strings are arithmetically linearly ordered.

Proof. If two of the canonical binary strings are distinct then there must be a location
where the two have different values. The locations in these strings are NN-ordered so
there must be a least location in which they differ. The string which has a 0 at this
location is easily seen to be the characteristic function of the subset of the class B
that has the lesser sum. It represents the smaller binary fraction because it cannot
have a tail of all 1s. �

This ordering of the canonical binary strings is lexicographic. This is not a well
ordering, which is not surprising because the canonical binary strings are dense.
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Corollary. Within the class of canonical representations of the real fractions, lexi-
cographic ordering is the same as numerical ordering.

This is not true of the class of all infinite binary strings. A lexicographic ordering
is not the same as a numerical ordering because of the redundancy of the strings
that have tails of all 1s. Although they are numerically equal, the redundant form
is lexicographically less.

Theorem. The cardinality of the canonical real fractions between any two distinct
real fractions is c.

Proof. Since the fractions are distinct, their corresponding characteristic functions
must differ and there must be a first position in which they differ. The smaller of the
two will have a 0 in that position. Furthermore, it will have an infinite number of
zeros beyond that position. If we replace the zeros in those infinitely many subsequent
zero positions by the binary digits from any canonical bit string that is not all 0s,
we get a new binary fraction which is greater than the smaller original but not as
great as the larger of the originals. The cardinality of these new strings is c. �

While the rational fractions are denumerably dense, the real fractions are
trans-denumerably dense.

Theorem. The class of all non-negative real numbers has cardinality c.

Proof. The non-negative real numbers can be represented by the sums of ordered
pairs < n, k > of which the first element is a natural number and the second element
is a non-negative real fraction. The natural numbers are 1:1 with a denumerable
subset of the finite binary strings and the real fractions are 1:1 with the canonical
infinite binary strings. Clearly, if we fix the natural number part as 0, we get a
subset of the non-negative real numbers, so the non-negative reals dominate the real
fractions.

Now let’s employ a unary segmented representation of the natural numbers as strings
of 1s each terminated by a single zero. We can left concatenate such a natural
number representation to the infinite binary string representing the real fraction.
When we do this, the first 0 in the resulting string unambiguously separates the
natural number from the fraction. The result is a canonical infinite binary string
and the real numbers so represented are a subset of the canonical binary strings.
Therefore, the real fractions dominate the non-negative real numbers. �

Theorem. The class of all real numbers has cardinality c.
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Proof. The negative real numbers have an obvious 1:1 relationship with the positive
real numbers and therefore also have cardinality c. Lets place a sign bit (1 for +
and 0 for -) in the initial position of the infinite binary strings that represent real
numbers to distinguish the negative from the non-negative strings.

The non-negative real numbers are a proper subset of the real numbers. Clearly, the
real numbers dominate the non-negative real numbers.

Also, any real number can be uniquely represented by a canonical infinite binary
string. Therefore, the real numbers are dominated by the canonical infinite binary
strings. �

Theorem. The cardinality of any finite dimensional real space is c.

Proof. Let’s consider the two dimensional case. The elements of this space are in a 1:1
relationship with ordered pairs of canonical infinite binary strings having cardinality
c. Therefore, its cardinality is at least c. If we bitwise interleave each such pair of
strings we get a new canonical infinite binary string, so the cardinality of the two
dimensional space is no greater than c. We can also bitwise interleave any ordered
finite ntuple of canonical binary strings, so the same method establishes the result
for finite dimensional spaces. �

25. Shrinking the Universes

We have constrained this presentation of set theory to sets that are symbolically
founded and which have symbolic class ordinals. Nevertheless, we are faced with an
embarrassment of riches. All cumulative classes of sets having cardinalities larger
than ℵ0 have transdenumerably more elements than we can define by any meta-
language texts and there are denumerably many such classes of sets having an infinite
ladder of greater cardinalities, even in a universe generated by a finite foundation
and trans-denumerable recursion up to ordinal ω · 2.

When we have constructed a denumerable class of symbols, even one application of
the multiwrap function will give us a class of sets which has cardinality c, having
trans-denumerably more elements than we can well define. We have already seen
this in the definition of the real line.

How large a universe do we really need? Science is an open ended enterprise and
we cannot offer a definitive answer to that question. What we do know is that the
continuum is a very useful mathematical concept and there is not now any scientific
demand for greater cardinalities. However, even the continuum is a boundary region
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in which most elements are not definable but in which many scientifically important
irrational numbers are well defined.

What might be more desirable for scientific purposes is a universe containing only all
of the elements that can be well defined. Such a universe could have only denumerable
cardinality but it would contain every element that science could define, including
irrational numbers. This can be achieved by modifying the axioms.

26. Symbolic Sets

Symbolic sets universes contain only symbolic ur-elements and well defined sets whose
elements are all symbols.

We shall now modify the definitions related to the wrap and multiwrap functions
so as to define universes of sets such that all sets are well defined and the elements
of all sets are symbols.

The first step is to redefine regularity without explicit use of the concept of rank.

A class is ss-regular if and only if it is well defined and all of its elements
are symbols.

This is a significant restriction. All finite classes of symbols are regular but most
infinite subclasses of an NN ordered class of symbols are not regular because they are
not well defined. The well defined infinite subclasses are important but they are not
symbols. Therefore, no class that contains the ss-wrap of one of them as an element
is regular. This will limit the recursion.

The ss-wrap of a class exists and is a set if and only if the class is ss-
regular.

It should be clear that multiwrap, applied to finite classes is not the same function
as multiwrap applied to regular denumerable classes. For example, when applied to
a finite class, it returns a larger finite class which is well defined and regular and it
can be algorithmically constructed. None of these things are true when it is applied
to a denumerable class. We need a new function when applying it to a denumerable
class and it is sensible to change its name.

We want to restrict multiwrap so as to avoid creating undefinable sets.

The ss-multiwrap of an ss-regular class, X, is a class whose only members
are the wraps of all of the well defined subclasses of X.
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We have now restricted both the domain and the range of ss-multiwrap. Neverthe-
less, the generative process will proceed from a finite symbolic foundation class as
before until the denumerable class is created at ordinal ω. It is at this point that
ss-multiwrap parts company with multiwrap.

If a class, X, is regular then all of its well defined subclasses are regular. This is true
because the elements of X are all symbols. IfX is infinite then some of its well defined
subclasses are infinite and therefore not symbols. Because of this, ss-multiwrap(X)
is not regular and no further application of ss-multiwrap is possible.

If we start the generation of a symbolic sets universe with an empty or finite founda-
tion class then the generation will procede as before up to the first limit point. The
class at CCω will contain all of the hereditarily finite sets and it will be ss-regular.
Applying ss-multiwrap, the successor class at ordinal (ω+1) will not be regular and
the recursion must terminate at that point. The universe will contain all sets that
have been created, including the finite sets and the well defined infinite sets.

We have said nothing about the meaningfulness of the sets. That is a serious philo-
sophic and linguistic problem and it has much to do with the application. The
definition of the meta-language, other than having a finite alphabet, and the deter-
mination of meaingfulness are questions far beyond the scope of this paper. However,
it is very easy to apply the restrictions of symbolic sets to the definition of the definate
real line.

27. Well Defined Symbolically Founded Universes

The property of symbols and classes of symbols of being well defined is itself in need
of an expanded definition.

We already know that all symbols of a linearly ordered finite alphabet are finitely
generable and can be NN ordered. All elements of such a class and the entire class
are considered well defined. This assumption about the entire class is not trivial.
While all elements are finitely generable, the entire class is not. We must assume
that the generation of this class can be carried out to completion. We accept all
classes of symbols whose elements can be finitely generated as well defined classes.
As a consequence of this mode of creation, all well defined denumerable classes of
symbols can be NN ordered. We may ignore this property at times but we lose no
generality when we make use of it.

What we must now do is to consider which denumerable subclasses of NN ordered
symbols are well defined.
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The criterion we used earlier is that a subclass Y of a well defined class X is well
defined if we can define a condY(x) algorithmic function such that condY(x)=1 if
x is an element of the subclass and condY(x)=0 otherwise. The definition of the
algorithm must be a finite text in some suitably expressive meta-language and the
algorithm must terminate with an answer.

Whenever NN order for the entire class of symbols has been established, there exists
a well defined 1:1 relationship between the subclasses and their characteristic binary
strings, each of which is representable as an infinite binary string. Therefore, if
a subclass is well defined, its characteristic function can be represented as a well
defined infinite binary string. Furthermore, every well defined infinite binary string
represents a well defined subclass. The well defined subclasses and their characteristic
functions are 1:1.

The advantage of using well defined infinite binary strings is that, once the symbols
have been given natural number order, these strings are independent of the particular
symbols being used. Every generable infinite binary string is the character-
istic function of a well defined subclass of an NN ordered class.

Because the class of all symbols is denumerable, every infinite subclass of them is de-
numerable. Furthermore, there is no doubt that we can define infinitely many infinite
binary strings. As a simple example, consider the generation of binary representa-
tions of all of the positive rational fractions. Each bit of these is finitely generable
by means of a division procedure in binary arithmetic.

Suppose that an NN ordered foundation class is well defined and all of its elements
are symbols. The family of its subclasses has cardinality c and only a denumerable
cardinality of them can be well defined. If we denote the ordinal of the foundation
class by ω then the new class we can create will have an ordinal that is conventionally
represented by ω+1. We accept this new class and its elements as well defined.

Some of the new sets created by this application of ss-multiwrap will contain infin-
itely many symbols and have rank ω + 1. These sets are not symbols. Becuse we
have defined ss-regularity to require that the class must have only symbolic elements,
that would limit ss-multiwrap to just one application to any NN ordered class of
symbols.

If the foundation class was generated by our recursive set generator and contains all
of the finitely hereditary sets, then all of the the finite sets at ordinal ω + 1 have
been created before and have lower ordinals.

If, on the other hand, the foundation class is just any NN ordered class of symbols,
then a single application of ss-multiwrap will create all of the finite sets as well as
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the well defined infinite subsets. The finite sets will be those whose characteristic
binary strings have a tail of all 0’s.

28. The Definate Real Line

We have already seen [23.1] that the arithmetically NN ordered class
B =< 2−1, 2−2, 2−3, · · · > is a sequence of elements that converge to 0 and its se-
quence of partial sums converges to 1. B is easily seen to be a finitely generable
sequence and is therefore well defined. To generate it the foundation element is 2−1

and the successor function is multiplication by 2−1.

Because class B has only symbolic elements and is well defined we can apply
ss-multiwrap to it. The resulting class, ss-multiwrap(B) contains the ss-wraps of
all of the well defined subclasses of B. Infinitely many of these subclasses of B are
infinite and therefore not symbols so no recursion is possible beyond this point.

The well defined subclasses of B are 1:1 with their characteristic functions and these
are all of the generable infinite binary strings. This gives us a neat way to characterize
the entire class. However, it will not be necessary to compute all of them.

As we have seen before, the generable characteristic binary strings that have a tail
of all 1’s are redundant, being numerically equal to other strings that have a tail of
all 0’s. The ones that have no last 0, the generable canonical infinite strings, are
1:1 with the definate real fractions. This tells us that the cardinality of the definate
real fractions is ℵ0. We have also seen that these characteristic binary strings, when
preceded by a binary point, are the actual representations of fractions in binary
arithmetic.

Furthermore, the entire definate real line is denumerable and definate real finite
dimensional spaces are also denumerable.

The important thing about the definate real numbers is this: if and only if it can
be defined, then it is there. From the point of view of scientific computations,
shedding the undefinable elements seems to have cost us nothing.

When we defined the real numbers [23.0], we employed a function, ordr< x, r >, for
ordering the real numbers with respect to the rationals in the execution of a binary
search procedure. The x variable represents a real number and r represents a rational
number. We delayed a discussion of the computability of this function because we
did not yet have representaions for the real numbers . It is now possible to deal with
that question.
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The rational numbers are a subclass of the reals. If we want to find a representation
of a non-negative rational fraction, given to us as a ratio of a natural number to
a positive integer, each comparison during the procedure is merely a comparison
of two rational numbers and is easily computable. The procedure becomes a form
of division in binary arithmetic. One other class of representations is also trivially
computable. We know that the representations of the non-negative binary fractions
as well defined infinite canonical binary strings must be fixed points for this search
procedure because changing even one digit would change the arithmetic value of the
result. It cannot be compensated by any changes in the tail. Because lexicographic
ordering is equivalent to arithmetic ordering in a population of definate canonical
infinite binary strings, these computations are performed by a very simple algorithm.
Inasmuch as we cannot perform computations upon undefinable strings, we are well
rid of that question.

It is quite clear that the well defined strings are arithmetically dense because they
include the rational fractions. Their truncations can approximate any real fraction
to any desired accuracy.

Any canonical bit string that can be defined by a text in a meta-language with a finite
alphabet is the characteristic function of a definate non-negative real fraction. When
preceded by a binary point, it is the binary arithmetic value of that fraction.

These observations suggest that, for the foreseeable future, binary computations with
finite binary strings will be sufficient for scientific calculations.
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30. Appendix

Suppose that X and Y are two well ordered classes of symbols. Having symbolic
elements, both classes will have countable cardinality but they may be ordinately
unequal. We shall construct an order isomorphism beween them or else between one
of them and a proper initial segment of the other. This construction will employ a
family of three classes of symbols at each step in the recursion.

For the foundation family, F0, we initialize X0 = X, Y0 = Y , and P0 = (), the empty
class. Then we apply the successor algorithm.
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Set x0 to be the least element of X0. Set X1 = difference < X0, x0 >, which is X0

with its least element removed.
Set y0 to be the least element of Y0. Set Y1 = difference < Y0, y0 >.
Set P1 = (< x1, y1 >), which is the union of P0 and < x1, y1 >.
The successor family is F1 = X1, Y1, P1.

The general recursion at Fk is
Set xk to be the least element of Xk.
Set Xk+1 = difference < Xk, xk >, which is Xk with its least element removed.
Set yk to be the least element of Yk.
Set Yk+1 = difference < Yk, yk >.
Set Pk+1 = union(Pk, < xk, yk >), which is the union of Pk
and < xk, yk >.
The successor family is Fk+1 = Xk+1, Yk+1, Pk+1.

This recursion is assumed to be carried out to completion, which is the point at
which no new pairs can be created.

There are only three possibilities at completion:

1) Both residual classes derived from X and Y are empty. Therefore all of their
elements now occur in the pairs in P and we have created an order isomorphism
between X and Y .

2) Residual X is empty but residual Y is not empty. Therefore we have created an
order isomorphism between X and a proper initial segment of Y .

3) Residual Y is empty but residual X is not empty. Therfore we have created an
order isomorphism between Y and a proper initial segment of X.

We have assumed that X and Y are well ordered classes of symbols. Therefore, the
proof need not employ the axiom of choice.

The weak point of this proof is the assumption that the recursion can be completed,
even when it is not a finite recursion. This is, however, not nearly as daring as a proof
in ZFC, in which it is axiomatically assumed that every set can be well ordered (one
form of the axiom of choice) and, however great the ordinalities are, the recursion
can be completed. This axiom of choice is believed to be independent of the ZF
axioms but it is counterintuitive in view of the fact that we don’t know how to well
order the mostly undefinable elements of any transdenumerable sets. By contrast,
any well defined class of symbols of a finite alphabet can be canonically well ordered.
If the alphabet is finite, all of its symbols can be finitely generated in canonical order.
If an algorithmic filter is available for some subclass, the same can be done for that
subclass.
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Nevertheless, we know that some classes of symbols can be well ordered so as to have
infinitely many ordinal limit points. An example of this is the class of symbols in
the form < x, y >, where x and y are any natural numbers and we assume that the
order of this class is lexicographic. This ordered class cannot be created by a finite
recursion. It’s extension can be finitely created but in a different order.

This suggests that the definition of well definedness should include a class of ordered
symbols if all of its elements can be finitely generated and the order can be textually
defined, even if that is not the order of creation.
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